930
Views
8
CrossRef citations to date
0
Altmetric
A special grouping of select papers presented at the international conference, “Sustainable technologies for industrial hazardous waste management and bioenergy production,” Chennai, India

Rhamnolipid-assisted mycoremediation of polycyclic aromatic hydrocarbons by Trametes hirsuta coupled with enhanced ligninolytic enzyme production

, , , &
Pages 1260-1267 | Received 26 Oct 2019, Accepted 25 Jun 2020, Published online: 07 Dec 2020

References

  • Batista-García, R. A., V. V. Kumar, A. Ariste, O. E. Tovar-Herrera, O. Savary, H. Peidro-Guzmán, D. González-Abradelo, S. A. Jackson, A. D. Dobson, and M. Del Rayo Sánchez-Carbente. 2017. Simple screening protocol for identification of potential mycoremediation tools for the elimination of polycyclic aromatic hydrocarbons and phenols from hyperalkalophile industrial effluents. J. Environ. Manage. 198:1–11. doi:10.1016/j.jenvman.2017.05.010.
  • Bogan, B. W., and R. T. Lamar. 1996. Polycyclic aromatic hydrocarbon-degrading capabilities of Phanerochaete laevis HHB-1625 and its extracellular ligninolytic enzymes. Appl. Environ. Microbiol. 62 (5):1597–603. doi:10.1128/AEM.62.5.1597-1603.1996.
  • Chen, B., and J. Ding. 2012. Biosorption and biodegradation of phenanthrene and pyrene in sterilized and unsterilized soil slurry systems stimulated by Phanerochaete chrysosporium. J. Hazard. Mater. 229:159–69. doi:10.1016/j.jhazmat.2012.05.090.
  • Chen, B., M. Yuan, and H. Liu. 2011. Removal of polycyclic aromatic hydrocarbons from aqueous solution using plant residue materials as a biosorbent. J. Hazard. Mater. 188 (1–3):436–42. doi:10.1016/j.jhazmat.2011.01.114.
  • Cilerdzic, J., M. Stajic, J. Vukojevic, S. Duletic-Lausevic, and A. Knezevic. 2011. Potential of Trametes hirsuta to produce ligninolytic enzymes during degradation of agricultural residues. Bioresour. Technol. 6:2885–95.
  • Das, P., X.-P. Yang, and L. Z. Ma. 2014. Analysis of biosurfactants from industrially viable Pseudomonas strain isolated from crude oil suggests how rhamnolipids congeners affect emulsification property and antimicrobial activity. Front. Microbiol. 5:696. doi:10.3389/fmicb.2014.00696.
  • FAO. 2016. 2015 global forest products facts and figures. Rome: FAO–Food and Agriculture Organization of the United Nations.
  • Gu, H., X. Luo, H. Wang, L. Wu, J. Wu, and J. Xu. 2015. The characteristics of phenanthrene biosorption by chemically modified biomass of Phanerochaete chrysosporium. Environ. Sci. Pollut. Res. 22:11850–61. doi:10.1007/s11356-015-4451-5.
  • Holmberg, K. 2018. Interactions between surfactants and hydrolytic enzymes. Colloids Surf B Biointerfaces 168:169–77. doi:10.1016/j.colsurfb.2017.12.002.
  • Kumar, V. V., S. Sivanesan, and H. Cabana. 2014. Magnetic cross-linked laccase aggregates—Bioremediation tool for decolorization of distinct classes of recalcitrant dyes. Sci. Total Environ. 487:830–39. doi:10.1016/j.scitotenv.2014.04.009.
  • Liew, C., A. Husaini, H. Hussain, S. Muid, K. Liew, and H. Roslan. 2011. Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World J. Microbiol. Biotechnol. 27:1457–68. doi:10.1007/s11274-010-0598-x.
  • Lu, Y., L. Yan, Y. Wang, S. Zhou, J. Fu, and J. Zhang. 2009. Biodegradation of phenolic compounds from coking wastewater by immobilized white rot fungus Phanerochaete chrysosporium. J. Hazar. Mater. 165:1091–97. doi:10.1016/j.jhazmat.2008.10.091.
  • Ma, Z., J. Liu, R. P. Dick, H. Li, D. Shen, Y. Gao, M. G. Waigi, and W. Ling. 2018. Rhamnolipid influences biosorption and biodegradation of phenanthrene by phenanthrene-degrading strain Pseudomonas sp. Ph6. Environ. Pollut. 240:359–67. doi:10.1016/j.envpol.2018.04.125.
  • Magalhães, L., and M. Nitschke. 2013. Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29:138–42. doi:10.1016/j.foodcont.2012.06.009.
  • Mandal, S., N. Khuda, M. Mian, M. Moniruzzaman, N. Nahar, M. Mamun, and M. Shoeb. 2015. Analysis of ground and surface water samples from some area of Dhaka city for polycyclic aromatic hydrocarbons (PAHs). Dhaka Univ. J. Sci. 63:59–60. doi:10.3329/dujs.v63i1.21770.
  • Mehrizi, E. A., M. Kermani, M. Farzadkia, A. Esarfili, and M. Ghorbanian. 2019. Study of improvement of bioremediation performance for the degradation of petroleum hydrocarbons in oily sludge by a chemical pretreatment strategy. J. Mater. Cycles Waste 21:1052–1062. doi: 10.1007/s10163-019-00848-y.
  • Rathankumar, A. K., K. Saikia, K. T. Nagarajan, V. K. Vaidyanathan, H. Cabana, and V. K. Vaidyanathan. 2020b. Development of efficient and sustainable added value products from municipal biosolids through an industrial feasible process. J. Clean. Prod. (In press). doi: 10.1016/j.jclepro.2020.121749.
  • Rathankumar, A. K., K. Saikia, K. Ramachandran, R. A. Batista, H. Cabana, and V. K. Vaidyanathan. 2020. Effect of soil organic matter (SOM) on the degradation of polycyclic aromatic hydrocarbons using Pleurotus dryinus IBB 903-A microcosm study. J. Environ. Manage. 260:110153. doi:10.1016/j.jenvman.2020.110153.
  • Rathankumar, A. K., S. SaiLavanyaa, K. Saikia, A. Gururajan, S. Sivanesan, M. Gosselin, V. K. Vaidyanathan, and H. Cabana. 2019. Systemic concocting of cross‐linked enzyme aggregates of Candida antarctica Lipase B (Novozyme 435) for the biomanufacturing of rhamnolipids. J. Surfactants Deterg. 22:477–90. doi:10.1002/jsde.12266.
  • Ron, E. Z., and E. Rosenberg. 2001. Natural roles of biosurfactants: Minireview. Environ. Microbiol. 3:229–36. doi:10.1046/j.1462-2920.2001.00190.x.
  • Sha, R., L. Jiang, Q. Meng, G. Zhang, and Z. Song. 2012. Producing cell‐free culture broth of rhamnolipids as a cost‐effective fungicide against plant pathogens. J. Basic Microbiol. 52:458–66. doi:10.1002/jobm.201100295.
  • Sondhi, S., P. Sharma, S. Saini, N. Puri, and N. Gupta. 2014. Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS One 9:e96951. doi:10.1371/journal.pone.0096951.
  • Vishnu, D., G. Neeraj, R. Swaroopini, R. Shobana, V. V. Kumar, and H. Cabana. 2017. Synergetic integration of laccase and versatile peroxidase with magnetic silica microspheres towards remediation of biorefinery wastewater. Environ. Sci. Pollut. Res. 24:17993–8009. doi:10.1007/s11356-017-9318-5.
  • Wang, P., X. Hu, S. Cook, M. Begonia, K. S. Lee, and H.-M. Hwang. 2008. Effect of culture conditions on the production of ligninolytic enzymes by white rot fungi Phanerochaete chrysosporium (ATCC 20696) and separation of its lignin peroxidase. World J. Microbiol. Biotechnol. 24:2205–12. doi:10.1007/s11274-008-9731-5.
  • Whang, L.-M., P.-W. G. Liu, -C.-C. Ma, and -S.-S. Cheng. 2008. Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil. J. Hazard. Mater. 151:155–63. doi:10.1016/j.jhazmat.2007.05.063.
  • Yamanaka, R., C. F. Soares, D. R. Matheus, and K. M. Machado. 2008. Lignolytic enzymes produced by Trametes villosa CCB176 under different culture conditions. Braz. J. Microbiol. 39:78–84. doi:10.1590/S1517-83822008000100019.
  • Zeng, G.-M., J.-G. Shi, X.-Z. Yuan, J. Liu, Z.-B. Zhang, G.-H. Huang, J.-B. Li, B.-D. Xi, and H.-L. Liu. 2006. Effects of Tween 80 and rhamnolipid on the extracellular enzymes of Penicillium simplicissimum isolated from compost. Enzyme Microb. Technol. 39:1451–56. doi:10.1016/j.enzmictec.2006.03.035.
  • Zhao, Z., A. Selvam, and J. W.-C. Wong. 2011. Effects of rhamnolipids on cell surface hydrophobicity of PAH degrading bacteria and the biodegradation of phenanthrene. Bioresour. Technol. 102:3999–4007. doi:10.1016/j.biortech.2010.11.088.
  • Zhou, M.-F., X.-Z. Yuan, H. Zhong, Z.-F. Liu, H. Li, -L.-L. Jiang, and G.-M. Zeng. 2011. Effect of biosurfactants on laccase production and phenol biodegradation in solid-state fermentation. Appl. Biochem. Biotechnol. 164:103–14. doi:10.1007/s12010-010-9118-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.