1,812
Views
7
CrossRef citations to date
0
Altmetric
Technical Paper

Highly efficient recovery of molybdenum from spent catalyst by an optimized process

, , , , , & show all
Pages 971-979 | Received 18 Dec 2019, Accepted 24 Jun 2020, Published online: 07 Aug 2020

References

  • Akcil, A., F. Vegliò, F. Ferella, M. D. Okudan, and A. Tuncuk. 2015. A review of metal recovery from spent petroleum catalysts and ash. Waste Manage. 45 (Urban Mining):420–33. doi:10.1016/j.wasman.2015.07.007.
  • Bal, Y., K. E. Bal, G. Cote, and A. Lallam. 2004. Characterization of the solid third phases that precipitate from the organic solutions of Aliquat? 336 after extraction of molybdenum(VI) and vanadium(V). Hydrometallurgy 75 (1–4):123–34.
  • Banda, R., T. H. Nguyen, S. H. Sohn, and S. L. Man. 2013. Recovery of valuable metals and regeneration of acid from the leaching solution of spent HDS catalysts by solvent extraction. Hydrometallurgy 133 (2):161–67. doi:10.1016/j.hydromet.2013.01.006.
  • Batchu, N. K., T. Vander Hoogerstraete, D. Banerjee, and K. Binnemans. 2017. Separation of rare-earth ions from ethylene glycol (+LiCl) solutions by non-aqueous solvent extraction with Cyanex 923. RSC Adv. 7 (72):45351–62. doi:10.1039/C7RA09144C.
  • Cheema, H. A., S. Ilyas, S. Masud, M. A. Muhsan, I. Mahmood, and J.-C. Lee. 2018. Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP. Sep. Purif. Tech. 191 (116–121):1383–5866. doi:10.1016/j.seppur.2017.09.021.
  • Hu, W., Y. Zhang, S. Liu, C. Zheng, X. Gao, I. Nova, and E. Tronconi. 2017. Improvement in activity and alkali resistance of a novel V-Ce(SO 4) 2/Ti catalyst for selective catalytic reduction of NO with NH 3. Appl Catal B 206 (Complete):449–60. doi:10.1016/j.apcatb.2017.01.036.
  • Iatsenko, G. N., A. A. Palant, V. A. Petrova, and R. K. Tagirov. 2001. Solvent extraction of molybdenum (VI), tungsten (VI) and rhenium (VII) by diisododecylamine from leach liquors. Hydrometallurgy 60 (1):1–5. doi:10.1016/S0304-386X(00)00123-7.
  • Lasheen, T. A., M. E. Ibrahim, H. B. Hassib, and A. S. Helal. 2014. Recovery of molybdenum from uranium bearing solution by solvent extraction with 5-Nonylsalicylaldoxime. Hydrometallurgy 146 (3):175–82. doi:10.1016/j.hydromet.2014.03.011.
  • Li, Z., G. Zhang, W. Guan, L. Zeng, L. Xiao, L. Qinggang, Z. Cao, and L. Xiuyuan. 2018. Separation of tungsten from molybdate using solvent extraction with primary amine N1923. Hydrometallurgy 175:203–07. doi:10.1016/j.hydromet.2017.10.018.
  • Meckes, M. C., J. Tillman, L. Drees, and E. Saylor. 1997. Removal of PCBs from a contaminated soil using CF-systems solvent extraction process. J. Air Waste Manage. Assoc. 47 (10):1119–24. doi:10.1080/10473289.1997.10464404.
  • Morı́S, M. A., F. V. Dı́Ez, and J. Coca. 1999. Solvent extraction of molybdenum and tungsten by Alamine 336 and DEHPA in a rotating disc contactor. Sepa. Purif. Tech. 17 (3):173–79. doi:10.1016/S1383-5866(99)00022-2.
  • Ning, P., H. Cao, and Y. Zhang. 2010. Selective extraction and deep removal of tungsten from sodium molybdate solution by primary amine N1923. Sepa. Purif. Tech. 70 (1):27–33. doi:10.1016/j.seppur.2009.08.006.
  • Ning, P., X. Lin, H. Cao, and Y. Zhang. 2014. Selective extraction and deep separation of V(V) and Cr(VI) in the leaching solution of chromium-bearing vanadium slag with primary amine LK-N21. Sepa. Purif. Tech. 137 (nov):109–15. doi:10.1016/j.seppur.2014.08.033.
  • Ojo, J. O., and O. O. Ajayi. 2013. Mechanism of the extraction of Molybdenum (VI) from diluted HCl and HNO3 solutions with di(2-ethylhexyl)phosphoric acid. Int. J. Biolog. Chem. Sci. 7 (3):1370. doi:10.4314/ijbcs.v7i3.42.
  • Olazabal, M. A., M. M. Orive, L. A. Fernã¡Ndez, and J. M. Madariaga. 1992. Selective extraction of vanadium (V) from solutions containing molybdenum (VI) by ammonium salts dissolved in toluene. Solvent Extr. Ion Exch. 10 (4):623–35. doi:10.1080/07366299208918125.
  • Onghena, B., S. Valgaeren, T. Vander Hoogerstraete, and K. Binnemans. 2017a. Cobalt (II)/nickel (II) separation from sulfate media by solvent extraction with an undiluted quaternary phosphonium ionic liquid. RSC Adv. 7 (57):35992–99. doi:10.1039/C7RA04753C.
  • Padhan, E., and K. Sarangi. 2014. Separation of molybdenum and cobalt from spent catalyst using Cyanex 272 and Cyanex 301. Int. J. Miner. Process. 127 (2):52–61. doi:10.1016/j.minpro.2014.01.003.
  • Parhi, P. K., K. H. Park, H. I. Kim, and J. T. Park. 2011. Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I. Hydrometallurgy 105 (3):195–200. doi:10.1016/j.hydromet.2010.09.004.
  • Park, K.-H., H.-I. Kim, and P. K. Parhi. 2010. Recovery of molybdenum from spent catalyst leach solutions by solvent extraction with LIX 84-I. Sep. Purif. Tech. 74 (3):294–299 1383-5866. doi:10.1016/j.seppur.2010.06.018.
  • Quijada-Maldonado, E., M. J. Torres, and J. Romero. 2016. Solvent extraction of Molybdenum (VI) from aqueous solution using ionic liquids as diluents. Sepa. Purif. Tech. 200:200–06.
  • Rout, A., S. Wellens, and K. Binnemans. 2014. Separation of rare earths and nickel by solvent extraction with two mutually immiscible ionic liquids. RSC Adv. 4 (11):5753–58. doi:10.1039/c3ra46261g.
  • Rout, P. C., G. K. Mishra, B. Padh, K. R. Suresh, and B. Ramachandra Reddy. 2017. Solvent extraction separation of molybdenum as thio-molybdate complex from alkaline tungsten leach liquor of spent HDS catalyst–A pilot study. Hydrometallurgy 174 (140–146):0304–386X. doi:10.1016/j.hydromet.2017.10.002.
  • Shah, D. B., A. V. Phadke, and W. M. Kocher. 1995. Lead removal from foundry waste by solvent extraction. J. Air Waste Manage. Assoc. 45 (3):150–55. doi:10.1080/10473289.1995.10467354.
  • Wejman-Gibas, K., K. Wieszczycka, A. Wojciechowska, K. Ochromowicz, and P. Pohl. 2016. Extraction of molybdenum(VI) from sulfate media by 3-pyridineketoxime and its quaternary salts. Sepa. Purif. Tech. 158:71–79. doi:10.1016/j.seppur.2015.11.037.
  • Wu, J., C. Wei, X. Li, S. Wang, M. Wang, and C. Li. 2012. Selective extraction of Mo using Cyanex-272 and tributyl phosphate from low grade Ni–Mo ore leach liquor. Sepa. Purif. Tech. 99 (41):120–26. doi:10.1016/j.seppur.2012.08.007.
  • Xia, Y., L. Xiao, C. Xiao, and L. Zeng. 2015. Direct solvent extraction of molybdenum(VI) from sulfuric acid leach solutions using PC-88A. Hydrometallurgy 158:114–18. doi:10.1016/j.hydromet.2015.10.016.
  • Yang, X., Y. Zhang, S. Bao, and C. Shen. 2016. Separation and recovery of vanadium from a sulfuric-acid leaching solution of stone coal by solvent extraction using trialkylamine. Sepa. Purif. Tech. 164:49–55. doi:10.1016/j.seppur.2016.03.021.
  • Yang, Z., J. Peidong, Q. Li, Y. Jiang, C. Zheng, Y. Wang, X. Gao, and R. Lin. 2019. Comprehensive understanding of SO3 effects on synergies among air pollution control devices in ultra-low emission power plants burning high-sulfur coal. J. Clean. Prod. 239. doi:10.1016/j.jclepro.2019.118096.
  • Yin, S. H., S. W. Li, W. Y. Wu, X. Bian, J. H. Peng, and L. B. Zhang. 2014. Extraction and separation of Ce(III) and Pr(III) in the system containing two complexing agents with di-(2-ethylhexyl) phosphoric acid. RSC Adv 4 (104):59997–60001. doi:10.1039/C4RA10143J.
  • Zeng, L., and C. Y. Cheng. 2009. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts: Part II: Separation and purification. Hydrometallurgy 98 (1):10–20. doi:10.1016/j.hydromet.2009.03.012.
  • Zeng, L., and C. Y. Cheng. 2010. Recovery of molybdenum and vanadium from synthetic sulphuric acid leach solutions of spent hydrodesulphurisation catalysts using solvent extraction. Hydrometallurgy 101 (3):141–47. doi:10.1016/j.hydromet.2009.12.008.
  • Zhang, S., S. Liu, X. Zhu, Y. Yang, W. Hu, H. Zhao, R. Qu, C. Zheng, and X. Gao. 2019. Low temperature catalytic oxidation of propane over cobalt-cerium spinel oxides catalysts. Appl. Surf. Sci. 479:1132–40. doi:10.1016/j.apsusc.2019.02.118.
  • Zheng, C., L. Xiao, R. Qu, S. Liu, Q. Xin, P. Ji, H. Song, W. Wu, and X. Gao. 2019. Numerical simulation of selective catalytic reduction of NO and SO2 oxidation in monolith catalyst. Chem. Eng. J. 361:874–84. doi:10.1016/j.cej.2018.12.150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.