1,192
Views
10
CrossRef citations to date
0
Altmetric
Technical Papers

Association of systemic inflammation and coagulation biomarkers with source-specific PM2.5 mass concentrations among young and elderly subjects in central Tehran

, , , , , , , , & show all
Pages 191-208 | Received 04 Feb 2020, Accepted 31 Jul 2020, Published online: 11 Dec 2020

References

  • Akbarzadeh, M. A., I. Khaheshi, A. Sharifi, N. Yousefi, M. Naderian, M. H. Namazi, M. Safi, H. Vakili, H. Saadat, S. Alipour Parsa, et al. 2018. The association between exposure to air pollutants including PM10, PM2.5, ozone, carbon monoxide, sulfur dioxide, and nitrogen dioxide concentration and the relative risk of developing STEMI: A case-crossover design. Environ. Res. 161:299–303. doi:10.1016/j.envres.2017.11.020.
  • Al Hanai, A. H., D. S. Antkiewicz, J. D. C. Hemming, M. M. Shafer, A. M. Lai, M. Arhami, V. Hosseini, and J. J. Schauer. 2019. Seasonal variations in the oxidative stress and inflammatory potential of PM 2. 5 in Tehran using an alveolar macrophage model; The role of chemical composition and sources. Environ. Int. 123:417–27. doi:10.1016/j.envint.2018.12.023.
  • Altuwayjiri, A., Pirhadi,M., Taghvaee, S., & Sioutas, C. (2020). Long-term trends in thecontribution of PM2. 5 sources to organic carbon (OC) in the LosAngeles basin and the effect of PM emission regulations. FaradayDiscussions. https://doi.org/10.1039/D0FD00074D
  • Amini, H., N. T. Trang Nhung, C. Schindler, M. Yunesian, V. Hosseini, M. Shamsipour, M. S. Hassanvand, Y. Mohammadi, F. Farzadfar, A. M. Vicedo-Cabrera, et al. 2019. Short-term associations between daily mortality and ambient particulate matter, nitrogen dioxide, and the air quality index in a Middle Eastern megacity. Environ. Pollut. 254:113121. doi:10.1016/j.envpol.2019.113121.
  • Amini, H., S. M. Taghavi-Shahri, S. B. Henderson, K. Naddafi, R. Nabizadeh, and M. Yunesian. 2014. Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran. Sci. Total Environ. 488–489:343–53. doi:10.1016/j.scitotenv.2014.04.106.
  • Arhami, M., V. Hosseini, M. Zare Shahne, M. Bigdeli, A. Lai, and J. J. Schauer. 2017. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran. Atmos. Environ. 153:70–82. doi:10.1016/j.atmosenv.2016.12.046.
  • Arjomandi, M., H. Wong, A. Donde, J. Frelinger, S. Dalton, W. Ching, K. Power, and J. R. Balmes. 2015. Exposure to medium and high ambient levels of ozone causes adverse systemic inflammatory and cardiac autonomic effects. Am. J. Physiol. - Hear. Circ. Physiol. 308:H1499–H1509. doi:10.1152/ajpheart.00849.2014.
  • Atash, F. 2007. The deterioration of urban environments in developing countries: Mitigating the air pollution crisis in Tehran, Iran. Cities 24:399–409. doi:10.1016/j.cities.2007.04.001.
  • Axen, G. J., P. S. Lam, M. Grove, D. F. Stockli, and J. Hassa-nzadeh. 2001. Exhumation of the west-central Alborz Mountains, Iran, Caspian subsidence, and collision-related tectonics. Geology 29:559–62. doi:10.1130/0091-7613(2001)029<0559:EOTWCA>2.0.CO;2.
  • Ayres, J. G., P. Borm, F. R. Cassee, V. Castranova, K. Donaldson, A. Ghio, R. M. Harrison, R. Hider, F. Kelly, I. M. Kooter, et al., 2008. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential - A workshop report and consensus statement. Inhal. Toxicol. 20, 75–99. doi: 10.1080/08958370701665517
  • Banerjee, T., V. Murari, M. Kumar, and M. P. Raju. 2015. Source apportionment of airborne particulates through receptor modeling: Indian scenario. Atmos. Res. 164–165:167–87. doi:10.1016/j.atmosres.2015.04.017.
  • Bates, J. T., T. Fang, V. Verma, L. Zeng, R. J. Weber, P. E. Tolbert, J. Y. Abrams, S. E. Sarnat, M. Klein, J. A. Mulholland, et al. 2019. Review of acellular assays of ambient particulate matter oxidative potential: Methods and relationships with composition, sources, and health effects. Environ. Sci. Technol. 53:4003–19. doi:10.1021/acs.est.8b03430.
  • Bayat, R., K. Ashrafi, M. Shafiepour Motlagh, M. S. Hassanvand, R. Daroudi, G. Fink, and N. Künzli. 2019. Health impact and related cost of ambient air pollution in Tehran. Environ. Res 176. doi:10.1016/j.envres.2019.108547.
  • Bell, M. L., K. Ebisu, B. P. Leaderer, J. F. Gent, H. J. Lee, P. Koutrakis, Y. Wang, F. Dominici, and R. D. Peng. 2014. Associations of PM2.5 constituents and sources with hospital admissions: Analysis of four counties in connecticut and Massachusetts (USA) for persons ≥ 65 years of age. Environ. Health Perspect 122:138–44. doi:10.1289/ehp.1306656.
  • Bräuner, E. V., P. Møller, L. Barregard, L. O. Dragsted, M. Glasius, P. Wåhlin, P. Vinzents, O. Raaschou-Nielsen, and S. Loft. 2008. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part. Fibre Toxicol. 5:1–9. doi:10.1186/1743-8977-5-13.
  • Brook, R. D., S. Rajagopalan, C. A. Pope, J. R. Brook, A. Bhatnagar, A. V. Diez-Roux, F. Holguin, Y. Hong, R. V. Luepker, M. A. Mittleman, et al. 2010. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the american heart association. Circulation 121:2331–78. doi:10.1161/CIR.0b013e3181dbece1.
  • Bruunsgaard, H., K. Andersen-Ranberg, J. V. B. Hjelmborg, B. K. Pedersen, and B. Jeune. 2003. Elevated levels of tumor necrosis factor alpha and mortality in centenarians. Am. J. Med. 115:278–83. doi:10.1016/S0002-9343(03)00329-2.
  • Carlsson, A. C., C. J. Östgren, F. H. Nystrom, T. Länne, P. Jennersjö, A. Larsson, and J. Arnlöv. 2016. Association of soluble tumor necrosis factor receptors 1 and 2 with nephropathy, cardiovascular events, and total mortality in type 2 diabetes. Cardiovasc. Diabetol. 15:1–8. doi:10.1186/s12933-016-0359-8.
  • Cesari, D., A. Genga, P. Ielpo, M. Siciliano, G. Mascolo, F. M. Grasso, and D. Contini. 2014. Source apportionment of PM2.5 in the harbour-industrial area of Brindisi (Italy): Identification and estimation of the contribution of in-port ship emissions. Sci. Total Environ 497–498:392–400. doi:10.1016/j.scitotenv.2014.08.007.
  • Charrier, J. G., and C. Anastasio. 2012. On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: Evidence for the importance of soluble\newline transition metals. Atmos. Chem. Phys. 12:9321–33. doi:10.5194/acp-12-9321-2012.
  • Chen, J. C., and J. Schwartz. 2008. Metabolic syndrome and inflammatory responses to long-term particulate air pollutants. Environ. Health Perspect. 116:612–17. doi:10.1289/ehp.10565.
  • Chen, R., Z. Zhao, Q. Sun, Z. Lin, A. Zhao, C. Wang, Y. Xi, X. Xu, and H. Kan. 2015. Size-fractionated particulate air pollution and circulating biomarkers of inflammation, coagulation, and vasoconstriction in a panel of young adults. Epidemiology 26:328–36. doi:10.1097/eDe.0000000000000273.
  • Chirizzi, D., D. Cesari, M. R. Guascito, A. Dinoi, L. Giotta, A. Donateo, and D. Contini. 2017. Influence of Saharan dust outbreaks and carbon content on oxidative potential of water-soluble fractions of PM2.5 and PM10. Atmos. Environ. 163:1–8. doi:10.1016/j.atmosenv.2017.05.021.
  • Clougherty, J. E. 2010. A growing role for gender analysis in air pollution epidemiology. Environ. Health Perspect. 118:167–76. doi:10.1289/ehp.0900994.
  • Cohen, D. D., J. Crawford, E. Stelcer, and V. T. Bac. 2009. Characterisation and source apportionment of fine particulate sources at Hanoi from 2001 to 2008. Atmos. Environ. 44:320–28. doi:10.1016/j.atmosenv.2009.10.037.
  • Crilley, L. R., F. Lucarelli, W. J. Bloss, R. M. Harrison, D. C. Beddows, G. Calzolai, S. Nava, G. Valli, V. Bernardoni, and R. Vecchi. 2017. Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ. Pollut. 220:766–78. doi:10.1016/j.envpol.2016.06.002.
  • Croft, D. P., S. J. Cameron, C. N. Morrell, C. J. Lowenstein, F. Ling, W. Zareba, P. K. Hopke, M. J. Utell, S. W. Thurston, K. Thevenet-Morrison, et al. 2017. Associations between ambient wood smoke and other particulate pollutants and biomarkers of systemic inflammation, coagulation and thrombosis in cardiac patients. Environ. Res. 154:352–61. doi:10.1016/j.envres.2017.01.027.
  • Delfino, R. J., N. Staimer, T. Tjoa, A. Polidori, M. Arhami, D. L. Gillen, M. T. Kleinman, N. D. Vaziri, J. Longhurst, F. Zaldivar, et al. 2008. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ. Health Perspect. 116:898–906. doi:10.1289/ehp.11189.
  • Delfino, R. J., N. Staimer, T. Tjoa, D. L. Gillen, A. Polidori, M. Arhami, M. T. Kleinman, N. D. Vaziri, J. Longhurst, and C. Sioutas. 2009. Air pollution exposures and circulating biomarkers of effect in a susceptible population: Clues to potential causal component mixtures and mechanisms. Environ. Health Perspect. 117:1232–38. doi:10.1289/ehp.0800194.
  • Delfino, R. J., N. Staimer, T. Tjoa, M. Arhami, A. Polidori, D. L. Gillen, M. T. Kleinman, J. J. Schauer, and C. Sioutas. 2010a. Association of biomarkers of systemic inflammation with organic components and source tracers in quasi-ultrafine particles. Environ. Health Perspect. 118:756–62. doi:10.1289/ehp.0901407.
  • Delfino, R. J., N. Staimera, T. Tjoaa, M. Arhami, A. Polidori, D. L. Gillend, S. C. George, M. M. Shafer, J. J. Schauer, and C. Sioutas. 2010b. Associations of Primary and secondary organic aerosols with airway and systemic inflammation in an elderly panel cohort. Epidemiology 21. doi:10.1097/EDE.0b013e3181f20e6c..
  • Duong, T. T. T., and B. K. Lee. 2011. Determining contamination level of heavy metals in road dust from busy traffic areas with different characteristics. J. Environ. Manage. 92:554–62. doi:10.1016/j.jenvman.2010.09.010.
  • Eze, I. C., M. Imboden, A. Kumar, M. Adam, A. Von Eckardstein, D. Stolz, M. W. Gerbase, N. Künzli, A. Turk, C. Schindler, et al. 2016. A common functional variant on the pro-inflammatory Interleukin-6 gene may modify the association between long-term PM10 exposure and diabetes. Environ. Heal. A Glob. Access Sci. Source 15:1–11. doi:10.1186/s12940-016-0120-5.
  • Faridi, S., S. Niazi, M. Shamsipour, and M. S. Hassanvand. 2019. Comments on: “Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran.”. Environ. Res. 174:122–24. doi:10.1016/j.envres.2019.04.026.
  • Gauderman, W. J., R. Urman, E. Avol, K. Berhane, R. McConnell, E. Rappaport, R. Chang, F. Lurmann, and F. Gilliland. 2015. Association of improved air quality with lung development in children. N. Engl. J. Med. 372:905–13. doi:10.1056/NEJMoa1414123.
  • Gragnano, F., S. Sperlongano, E. Golia, F. Natale, R. Bianchi, M. Crisci, F. Fimiani, I. Pariggiano, V. Diana, A. Carbone, et al. 2017. The role of von willebrand factor in vascular inflammation: From pathogenesis to targeted therapy. Mediators Inflamm. 2017. doi:10.1155/2017/5620314.
  • Green, D., L. Tian, P. Greenland, K. Liu, M. Kibbe, R. Tracy, S. Shah, J. T. Wilkins, M. D. Huffman, Y. Liao, et al. 2017. Association of the von willebrand factor-ADAMTS13 ratio with incident cardiovascular events in patients with peripheral arterial disease. Clin. Appl. Thromb. 23:807–13. doi:10.1177/1076029616655615.
  • Hasheminassab, S., N. Daher, B. D. Ostro, and C. Sioutas. 2014. Long-term source apportionment of ambient fine particulate matter (PM 2.5) in the Los Angeles Basin: A focus on emissions reduction from vehicular sources. Environ. Pollut 193:54–64. doi:10.1016/j.envpol.2014.06.012.
  • Hassanvand, M. S., K. Naddafi, H. Kashani, S. Faridi, N. Kunzli, R. Nabizadeh, F. Momeniha, A. Gholampour, M. Arhami, A. Zare, et al. 2017. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ. Pollut. 223:695–704. doi:10.1016/j.envpol.2017.02.005.
  • Hassanvand, M. S., K. Naddafi, S. Faridi, M. Arhami, R. Nabizadeh, M. H. Sowlat, Z. Pourpak, N. Rastkari, F. Momeniha, H. Kashani, et al. 2014. Indoor/outdoor relationships of PM10, PM2.5, and PM1 mass concentrations and their water-soluble ions in a retirement home and a school dormitory. Atmos. Environ. 82:375–82. doi:10.1016/j.atmosenv.2013.10.048.
  • Hassanvand, M. S., K. Naddafi, S. Faridi, R. Nabizadeh, M. H. Sowlat, F. Momeniha, A. Gholampour, M. Arhami, H. Kashani, A. Zare, et al. 2015. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory. Sci. Total Environ. 527–528:100–10. doi:10.1016/j.scitotenv.2015.05.001.
  • Heaney, M. L., and D. W. Golde. 1998. Soluble receptors in human disease. J. Leukoc. Biol. 64:135–46. doi:10.1002/jlb.64.2.135.
  • Heikkilä, K., S. Ebrahim, and D. A. Lawlor. 2008. Systematic review of the association between circulating interleukin-6 (IL-6) and cancer. Eur. J. Cancer 44:937–45. doi:10.1016/j.ejca.2008.02.047.
  • Hennig, F., K. Fuks, S. Moebus, G. Weinmayr, M. Memmesheimer, H. Jakobs, M. Bröcker-Preuss, D. Führer-Sakel, S. Möhlenkamp, R. Erbel, et al. 2014. Association between source-specific particulate matter air pollution and hs-CRP: Local traffic and industrial emissions. Environ. Health Perspect. 122:703–10. doi:10.1289/ehp.1307081.
  • Hosseini, V., and H. Shahbazi. 2016. Urban Air Pollution in Iran. Iran. Stud. 49:1029–46. doi:10.1080/00210862.2016.1241587.
  • Hosseinpoor, A. R., M. H. Forouzanfar, M. Yunesian, F. Asghari, K. H. Naieni, and D. Farhood. 2005. Air pollution and hospitalization due to angina pectoris in Tehran, Iran: A time-series study. Environ. Res. 99:126–31. doi:10.1016/j.envres.2004.12.004.
  • Jacobs, L., J. Emmerechts, C. Mathieu, M. F. Hoylaerts, F. Fierens, P. H. Hoet, B. Nemery, and T. S. Nawrot. 2010. Air pollution-related prothrombotic changes in persons with diabetes. Environ. Health Perspect. 118:191–96. doi:10.1289/ehp.0900942.
  • Jacobs, L., J. Emmerechts, M. F. Hoylaerts, C. Mathieu, P. H. Hoet, B. Nemery, and T. S. Nawrot. 2011. Traffic air pollution and oxidized LDL. PLoS One 6. doi:10.1371/journal.pone.0016200.
  • Jeng, H. A., C. H. Pan, N. Diawara, G. P. Chang-Chien, W. Y. Lin, C. T. Huang, C. K. Ho, and M. T. Wu. 2011. Polycyclic aromatic hydrocarbon-induced oxidative stress and lipid peroxidation in relation to immunological alteration. Occup. Environ. Med. 68:653–58. doi:10.1136/oem.2010.055020.
  • Jiang, H., M. Jang, T. Sabo-Attwood, and S. E. Robinson. 2016. Oxidative potential of secondary organic aerosols produced from photooxidation of different hydrocarbons using outdoor chamber under ambient sunlight. Atmos. Environ. 131:382–89. doi:10.1016/j.atmosenv.2016.02.016.
  • Jiang, X., F. Xu, X. Qiu, X. Shi, M. Pardo, Y. Shang, J. Wang, Y. Rudich, and T. Zhu. 2019. Hydrophobic organic components of ambient fine particulate matter (PM 2.5) associated with inflammatory cellular response. Environ. Sci. Technol 53:10479–86. doi:10.1021/acs.est.9b02902.
  • Kamath, D. Y., D. Xavier, A. Sigamani, and P. Pais. 2015. High sensitivity C-reactive protein (hsCRP) & cardiovascular disease: An Indian perspective. Indian J. Med. Res. 142:261–68. doi:10.4103/0971-5916.166582.
  • Karanasiou, A. A., P. A. Siskos, and K. Eleftheriadis. 2009. Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmos. Environ. 43:3385–95. doi:10.1016/j.atmosenv.2009.03.051.
  • Keuken, M. P., M. Moerman, M. Voogt, M. Blom, E. P. Weijers, T. Röckmann, and U. Dusek. 2013. Source contributions to PM2.5 and PM10 at an urban background and a street location. Atmos. Environ. 71:26–35. doi:10.1016/j.atmosenv.2013.01.032.
  • Kim, H. J., M. G. Choi, M. K. Park, and Y. R. Seo. 2017a. Predictive and prognostic biomarkers of respiratory diseases due to particulate matter exposure. J. Cancer Prev. 22:6–15. doi:10.15430/jcp.2017.22.1.6.
  • Kim, J. H., S. Lim, K. S. Park, H. C. Jang, and S. H. Choi. 2017b. Total and differential WBC counts are related with coronary artery atherosclerosis and increase the risk for cardiovascular disease in Koreans. PLoS One 12:1–12. doi:10.1371/journal.pone.0180332.
  • Kritchevsky, S. B., M. Cesari, and M. Pahor. 2005. Inflammatory markers and cardiovascular health in older adults. Cardiovasc. Res. 66:265–75. doi:10.1016/j.cardiores.2004.12.026.
  • Laskin, D. L., G. Mainelis, B. Turpin, K. J. Patel, and V. R. Sunil. 2010. Pulmonary effects of inhaled diesel exhaust in young and old mice. A Pilot Project 18:1199–216. doi:10.1016/j.micinf.2011.07.011.Innate.
  • Lee, J. K., R. Bettencourt, D. Brenner, T. A. Le, E. Barrett-Connor, and R. Loomba. 2012. Association between serum interleukin-6 concentrations and mortality in older adults: The rancho bernardo study. PLoS One 7. doi:10.1371/journal.pone.0034218.
  • Li, W., K. S. Dorans, E. H. Wilker, M. B. Rice, P. L. Ljungman, J. D. Schwartz, B. A. Coull, P. Koutrakis, D. R. Gold, J. F. Keaney, et al. 2017. Short-term exposure to ambient air pollution and biomarkers of systemic inflammation: The framingham heart study. Arterioscler. Thromb. Vasc. Biol. 37:1793–800. doi:10.1161/ATVBAHA.117.309799.
  • Lim, J. M., J. H. Lee, J. H. Moon, Y. S. Chung, and K. H. Kim. 2010. Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization. Atmos. Res. 95:88–100. doi:10.1016/j.atmosres.2009.08.009.
  • Lionetto, M. G., M. R. Guascito, R. Caricato, M. E. Giordano, A. R. Bartolomeo, M. P. De, Romano, M. Conte, A. Dinoi, and D. Contini. 2019. Correlation of oxidative potential with ecotoxicological and cytotoxicological potential of PM 10 at an urban background site in Italy. Atmosphere (Basel) 10:733. doi:10.3390/atmos10120733.
  • Lippmann, M. 2010. Targeting the components most responsible for airborne particulate matter health risks. J. Expo. Sci. Environ. Epidemiol. 20:117–18. doi:10.1038/jes.2010.1.
  • Liu, B., J. Wu, J. Zhang, L. Wang, J. Yang, D. Liang, Q. Dai, X. Bi, Y. Feng, Y. Zhang, et al. 2017a. Characterization and source apportionment of PM 2.5 based on error estimation from EPA PMF 5.0 model at a medium city in China. Environ. Pollut. 222:10–22. doi:10.1016/j.envpol.2017.01.005.
  • Liu, C., J. Cai, L. Qiao, H. Wang, W. Xu, H. Li, Z. Zhao, R. Chen, and H. Kan. 2017b. The acute effects of fine particulate matter constituents on blood inflammation and coagulation. Environ. Sci. Technol. 51:8128–37. doi:10.1021/acs.est.7b00312.
  • Lowe, G., M. Woodward, G. Hillis, A. Rumley, Q. Li, S. Harrap, M. Marre, P. Hamet, A. Patel, N. Poulter, et al. 2014. Circulating inflammatory markers and the risk of vascular complications and mortality in people with type 2 diabetes and cardiovascular disease or risk factors: The advance study. Diabetes 63:1115–23. doi:10.2337/db12-1625.
  • Lundstedt, S., P. A. White, C. L. Lemieux, K. D. Lynes, I. B. Lambert, L. Öberg, P. Haglund, and M. Tysklind. 2007. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. R. Swedish Acad. Sci. 36:475–85. doi:10.1579/0044-7447(2007)36[475:SFATHO]2.0.CO;2.
  • Ma, H., J. Li, C. Wan, Y. Liang, X. Zhang, G. Dong, L. Hu, B. Yang, X. Zeng, T. Su, et al. 2019. Inflammation response of water-soluble fractions in atmospheric fine particulates: A seasonal observation in 10 large chinese cities. Environ. Sci. Technol. 53:3782–90. doi:10.1021/acs.est.8b05814.
  • MohseniBandpi, A., A. Eslami, A. Shahsavani, F. Khodagholi, and A. Alinejad. 2017. Physicochemical characterization of ambient PM2.5in Tehran air and its potential cytotoxicity in human lung epithelial cells (A549). Sci. Total Environ 593–594:182–90. doi:10.1016/j.scitotenv.2017.03.150.
  • Mostofsky, E., J. Schwartz, B. A. Coull, P. Koutrakis, G. A. Wellenius, H. H. Suh, D. R. Gold, and M. A. Mittleman. 2012. Modeling the association between particle constituents of air pollution and health outcomes several studies have shown that short-term increases in levels of fi ne ambient particulate matter (particles with Studies in which the asso. Am. J. Epidemiol. 176:317–26. doi:10.1093/aje/kws018.
  • Naddafi, K., M. S. Hassanvand, M. Yunesian, F. Momeniha, R. Nabizadeh, S. Faridi, and A. Gholampour. 2012. Health impact assessment of air pollution in megacity of Tehran, Iran. J. Environ. Heal. Sci. Eng. 9:1–7. doi:10.1186/1735-2746-9-28.
  • Ng, C., B. Malig, S. Hasheminassab, C. Sioutas, R. Basu, and K. Ebisu. 2017. Source apportionment of fine particulate matter and risk of term low birth weight in California: Exploring modification by region and maternal characteristics. Sci. Total Environ. 605–606:647–54. doi:10.1016/j.scitotenv.2017.06.053.
  • Niu, X., S. S. H. Ho, K. F. Ho, Y. Huang, J. Sun, Q. Wang, Y. Zhou, Z. Zhao, and J. Cao. 2017. Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region. Environ. Pollut. 231:1075–84. doi:10.1016/j.envpol.2017.08.099.
  • Norris, G., R. Duvall, S. Brown, and S. Ba, 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide 136.
  • Ostro, B., B. Malig, R. Broadwin, R. Basu, E. B. Gold, J. T. Bromberger, C. Derby, S. Feinstein, G. A. Greendale, E. A. Jackson, et al. 2014. Chronic PM2.5 exposure and inflammation: Determining sensitive subgroups in mid-life women. Environ. Res. 132:168–75. doi:10.1016/j.envres.2014.03.042.
  • Paatero, P. 1997. Least squares formulation of robust non-negative factor analysis. Chemom. Intell. Lab. Syst. 37:23–35. doi:10.1016/S0169-7439(96)00044-5.
  • Paatero, P., S. Eberly, S. G. Brown, and G. A. Norris. 2014. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 7:781–97. doi:10.5194/amt-7-781-2014.
  • Paatero, P., and U. Tapper. 1994. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–26. doi:10.1002/env.3170050203.
  • Pilz, V., K. Wolf, S. Breitner, R. Rückerl, W. Koenig, W. Rathmann, J. Cyrys, A. Peters, and A. Schneider. 2018. C-reactive protein (CRP) and long-term air pollution with a focus on ultrafine particles. Int. J. Hyg. Environ. Health 221:510–18. doi:10.1016/j.ijheh.2018.01.016.
  • Pope, C. A., A. Bhatnagar, J. P. McCracken, W. Abplanalp, D. J. Conklin, and T. O’Toole. 2016. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 119:1204–14. doi:10.1161/CIRCRESAHA.116.309279.
  • Pope, C. A., J. B. Muhlestein, J. L. Anderson, J. B. Cannon, N. M. Hales, K. G. Meredith, V. Le, and B. D. Horne. 2015. Short-term exposure to fine particulate matter air pollution is preferentially associated with the risk of ST-segment elevation acute coronary events. J. Am. Heart Assoc. 4:1–10. doi:10.1161/JAHA.115.002506.
  • Quay, J. L., W. Reed, J. Samet, and R. B. Devlin. 1998. Air pollution particles induce IL-6 gene expression in human airway epithelial cells via NF-κB activation. Am. J. Respir. Cell Mol. Biol. 19:98–106. doi:10.1165/ajrcmb.19.1.3132.
  • Reff, A., S. I. Eberly, and P. V. Bhave. 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: Review of existing methods. J. Air Waste Manag. Assoc. 57:146–54. doi:10.1080/10473289.2007.10465319.
  • Ribeiro, C. M., S. R. Oliveira, D. F. Alfieri, T. Flauzino, D. R. Kaimen-Maciel, A. N. C. Simão, M. Maes, and E. M. V. Reiche. 2019. Tumor necrosis factor alpha (TNF-α) and its soluble receptors are associated with disability, disability progression and clinical forms of multiple sclerosis. Inflamm. Res 1–11. doi:10.1007/s00011-019-01286-0.
  • Rich, D. Q., H. Özkaynak, J. Crooks, L. Baxter, J. Burke, P. Ohman-Strickland, K. Thevenet-Morrison, H. M. Kipen, J. Zhang, J. B. Kostis, et al. 2013. The triggering of myocardial infarction by fine particles is enhanced when particles are enriched in secondary species. Environ. Sci. Technol. 47:9414–23. doi:10.1021/es4027248.
  • Rückerl, R., R. Hampel, S. Breitner, J. Cyrys, U. Kraus, J. Carter, L. Dailey, R. B. Devlin, D. Diaz-Sanchez, W. Koenig, et al. 2014. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ. Int. 70:32–49. doi:10.1016/j.envint.2014.05.013.
  • Samara, C. 2017. On the redox activity of urban aerosol particles: Implications for size distribution and relationships with organic aerosol components. Atmosphere (Basel) 8. doi:10.3390/atmos8100205.
  • Shahbazi, H., M. Reyhanian, V. Hosseini, and H. Afshin. 2016a. The relative contributions of mobile sources to air pollutant emissions in Tehran, Iran: An emission inventory approach. Emiss. Control Sci. Technol. 2:44–56. doi:10.1007/s40825-015-0031-x.
  • Shahbazi, H., S. Taghvaee, V. Hosseini, and H. Afshin. 2016b. A GIS based emission inventory development for Tehran. Urban Clim 17:216–29. doi:10.1016/j.uclim.2016.08.005.
  • Sheng, K., and J. Lu. 2017. Typical airborne quinones modulate oxidative stress and cytokine expression in lung epithelial A549 cells. J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 52:127–34. doi:10.1080/10934529.2016.1237127.
  • Simoneit, B. R., Schauer, J. J., Nolte, C. G., Oros, D. R., Elias, V. O., Fraser, M. P., ... & Cass, G. R. (1999). Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment, 33(2), 173–182
  • Siponen, T., T. Yli-Tuomi, M. Aurela, H. Dufva, R. Hillamo, M. R. Hirvonen, K. Huttunen, J. Pekkanen, A. Pennanen, I. Salonen, et al. 2015. Source-specific fine particulate air pollution and systemic inflammation in ischaemic heart disease patients. Occup. Environ. Med. 72:277–83. doi:10.1136/oemed-2014-102240.
  • Snyder, D. C., A. P. Rutter, R. Collins, C. Worley, and J. J. Schauer. 2009. Insights into the origin of water soluble organic carbon in atmospheric fine particulate matter. Aerosol Sci. Technol. 43:1099–107. doi:10.1080/02786820903188701.
  • Soleimanian, E., A. Mousavi, S. Taghvaee, M. H. Sowlat, S. Hasheminassab, A. Polidori, and C. Sioutas. 2019a. Spatial trends and sources of PM2.5 organic carbon volatility fractions (OCx) across the Los Angeles Basin. Atmos. Environ 209:201–11. doi:10.1016/j.atmosenv.2019.04.027.
  • Soleimanian, E., S. Taghvaee, A. Mousavi, M. Sowlat, M. Hassanvand, M. Yunesian, K. Naddafi, and C. Sioutas. 2019b. Sources and temporal variations of coarse particulate matter (PM) in Central Tehran, Iran. Atmosphere (Basel) 10:291. doi:10.3390/atmos10050291.
  • Song, Y., Y. Zhang, S. Xie, L. Zeng, M. Zheng, L. G. Salmon, M. Shao, and S. Slanina. 2006. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmos. Environ. 40:1526–37. doi:10.1016/j.atmosenv.2005.10.039.
  • Steenhof, M., N. A. H. Janssen, M. Strak, G. Hoek, I. Gosens, I. S. Mudway, F. J. Kelly, R. M. Harrison, R. H. H. Pieters, F. R. Cassee, et al. 2014. Air pollution exposure affects circulating white blood cell counts in healthy subjects: The role of particle composition, oxidative potential and gaseous pollutants-the RAPTES project. Inhal. Toxicol. 26:141–65. doi:10.3109/08958378.2013.861884.
  • Su, T. C., J. J. Hwang, Y. R. Yang, and C. C. Chan. 2017. Association between long-term exposure to traffic-related air pollution and inflammatory and thrombotic markers in middle-aged adults. Epidemiology 28:S74–S81. doi:10.1097/EDE.0000000000000715.
  • Sun, X., X. Luo, C. Zhao, B. Zhang, J. Tao, Z. Yang, W. Ma, and T. Liu. 2016. The associations between birth weight and exposure to fine particulate matter (PM2.5) and its chemical constituents during pregnancy: A meta-analysis. Environ. Pollut 211:38–47. doi:10.1016/j.envpol.2015.12.022.
  • Taghvaee, S., M. H. Sowlat, A. Mousavi, M. S. Hassanvand, M. Yunesian, K. Naddafi, and C. Sioutas. 2018. Source apportionment of ambient PM2.5 in two locations in central Tehran using the Positive Matrix Factorization (PMF) model. Sci. Total Environ 628–629:672–86. doi:10.1016/j.scitotenv.2018.02.096.
  • Tuet, W. Y., Y. Chen, L. Xu, S. Fok, D. Gao, R. J. Weber, and N. L. Ng. 2017. Chemical oxidative potential of secondary organic aerosol (SOA) generated from the photooxidation of biogenic and anthropogenic volatile organic compounds. Atmos. Chem. Phys. 17:839–53. doi:10.5194/acp-17-839-2017.
  • Velde, A. R., W. C. van Der, Meijers, and R. A. de Boer. 2014. Biomarkers for risk prediction in acute decompensated heart failure. Curr. Heart Fail. Rep. 11:246–59. doi:10.1007/s11897-014-0207-7.
  • Veranth, J. M., T. A. Moss, J. C. Chow, R. Labban, W. K. Nichols, J. C. Walton, J. G. Watson, and G. S. Yost. 2006. Correlation of in vitro cytokine responses with the chemical composition of soil-derived particulate matter. Environ. Health Perspect. 114:341–49. doi:10.1289/ehp.8360.
  • Verma, V., R. Rico-Martinez, N. Kotra, L. King, J. Liu, T. W. Snell, and R. J. Weber. 2012. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols. Environ. Sci. Technol. 46:11384–92. doi:10.1021/es302484r.
  • Vreeland, H., R. Weber, M. Bergin, R. Greenwald, R. Golan, A. G. Russell, V. Verma, and J. A. Sarnat. 2017. Oxidative potential of PM 2.5 during Atlanta rush hour: Measurements of in-vehicle dithiothreitol (DTT) activity. Atmos. Environ. 165:169–78. doi:10.1016/j.atmosenv.2017.06.044.
  • Wang, C. F., C. Y. Chang, S. F. Tsai, and H. L. Chiang. 2005. Characteristics of road dust from different sampling sites in northern taiwan. J. Air Waste Manag. Assoc. 55:1236–44. doi:10.1080/10473289.2005.10464717.
  • WHO. 2018. World health statistics, 2018: monitoring health for the SDGs, sustainable development goals. Geneva.
  • Wu, S., F. Deng, H. Wei, J. Huang, H. Wang, M. Shima, X. Wang, Y. Qin, C. Zheng, Y. Hao, et al. 2012. Chemical constituents of ambient particulate air pollution and biomarkers of inflammation, coagulation and homocysteine in healthy adults: A prospective panel study. Part. Fibre Toxicol. 9:1–13. doi:10.1186/1743-8977-9-49.
  • Wu, S., F. Deng, H. Wei, J. Huang, X. Wang, Y. Hao, C. Zheng, Y. Qin, H. Lv, M. Shima, et al. 2014. Association of cardiopulmonary health effects with source-appointed ambient fine particulate in Beijing, China: A combined analysis from the healthy volunteer natural relocation (HVNR) study. Environ. Sci. Technol. 48:3438–48. doi:10.1021/es404778w.
  • Yuan, Z., Y. Chen, Y. Zhang, H. Liu, Q. Liu, J. Zhao, M. Hu, W. Huang, G. Wang, T. Zhu, et al. 2013. Changes of plasma vWF level in response to the improvement of air quality: An observation of 114 healthy young adults. Ann. Hematol. 92:543–48. doi:10.1007/s00277-013-1679-3.
  • Yue, W., A. Schneider, M. Stölzel, R. Rückerl, J. Cyrys, X. Pan, W. Zareba, W. Koenig, H. E. Wichmann, and A. Peters. 2007. Ambient source-specific particles are associated with prolonged repolarization and increased levels of inflammation in male coronary artery disease patients. Mutat. Res. - Fundam. Mol. Mech. Mutagen. 621:50–60. doi:10.1016/j.mrfmmm.2007.02.009.
  • Zhang, J., J. Gong, T. Zhu, H. Kipen, G. Wang, M. Hu, P. Ohman-Strickland, S. E. Lu, L. Zhang, Y. Wang, et al. 2013a. Cardiorespiratory biomarker responses in healthy young adults to drastic air quality changes surrounding the 2008 beijing olympics. J. Expo. Sci. Environ. Epidemiol. 23:322–27. doi:10.1038/jes.2012.127.
  • Zhang, R., J. Jing, J. Tao, S. C. Hsu, G. Wang, J. Cao, C. S. L. Lee, L. Zhu, Z. Chen, Y. Zhao, et al. 2013b. Chemical characterization and source apportionment of PM2.5 in Beijing: Seasonal perspective. Atmos. Chem. Phys. 13:7053–74. doi:10.5194/acp-13-7053-2013.
  • Zhang, Z., G. Hoek, L. Y. Chang, T. C. Chan, C. Guo, Y. C. Chuang, J. Chan, C. Lin, W. K. Jiang, Y. Guo, et al. 2018. Particulate matter air pollution, physical activity and systemic inflammation in Taiwanese adults. Int. J. Hyg. Environ. Health 221:41–47. doi:10.1016/j.ijheh.2017.10.001.
  • Zong, Z., X. Wang, C. Tian, Y. Chen, L. Qu, L. Ji, G. Zhi, J. Li, and G. Zhang. 2016. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: Insight into the contribution of biomass burning. Atmos. Chem. Phys. 16:11249–65. doi:10.5194/acp-16-11249-2016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.