2,816
Views
5
CrossRef citations to date
0
Altmetric
Technical Paper

Methane flux from flowback operations at a shale gas site

ORCID Icon, , , , , , , , , , , , , , , , , & show all
Pages 1324-1339 | Received 03 Apr 2020, Accepted 07 Aug 2020, Published online: 27 Oct 2020

References

  • Allen, D. T., D. W. Sullivan, D. Zavala-Araiza, A. P. Pacsi, M. Harrison, K. Keen, M. P. Fraser, A. D. Hill, B. K. Lamb, R. F. Sawyer, et al. 2015. Methane emissions from process equipment at natural gas production sites in the United States: Liquid unloadings. Environ. Sci. Technol. 49:641–48. doi:10.1021/es504016r.
  • Allen, D. T., V. M. Torres, J. Thomas, D. W. Sullivan, M. Harrison, A. Hendler, S. C. Herndon, C. E. Kolb, M. P. Fraser, A. D. Hill, et al. 2013. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. 110:17768–73. doi:10.1073/pnas.1304880110.
  • Atherton, E., D. Risk, C. Fougère, M. Lavoie, A. Marshall, J. Werring, J. P. Williams, and C. Minions. 2017. Mobile measurement of methane emissions from natural gas developments in north-eastern British Columbia, Canada. Atmos. Chem. Phys. 17:12405–20. doi:10.10.5194/acp-17-12405-2017.
  • BEIS. 2019. Greenhouse gas reporting: Conversion factors. London, UK: Department for Business, Energy & Industrial Strategy. Accessed August, 2019. https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors–2019.
  • Brantley, H. L., E. D. Thoma, W. C. Squier, B. B. Guven, and D. Lyon. 2014. Assessment of methane emissions from oil and gas production pads using mobile measurements. Environ. Sci. Technol. 48:14508–15. doi:10.1021/es503070q.
  • Cathles, L. M., III, L. Brown, M. Taam, and A. Hunter. 2012. A commentary on “The greenhouse-gas footprint of natural gas in shale formations”; by R. W. Howarth, R. Santoro, and A. Ingraffea. Clim. Change 113 (2):525–35. doi:http://dx.doi.10.1007/s10584-011-0333-0.
  • Clancy, S. A., F. Worrall, R. J. Davies, and J. G. Gluyas. 2018. An assessment of the footprint and carrying capacity of oil and gas well sites: The implications for limiting hydrocarbon reserves. Sci. Tot. Env. 618:586–94. doi:10.1016/j.scitotenv.2017.02.160.
  • Connolly, P. 2019. A simple Gaussian plume model for investigating air quality. Accessed February 7, 2019. https://github.com/maul1609/gaussian-plume-model-practical.
  • Cooper, J., L. Stamford, and A. Azapagic. 2014. Environmental impacts of shale gas in the UK: Current situation and future scenarios. Energy Technol. 2 (12):1012–26. doi:10.1002/ente.201402097.
  • Cuadrilla Resources Ltd. 2019. Accessed June 24, 2019. https://cuadrillaresources.com/media-resources/press-releases/cuadrilla-shale-gas-initial-flow-test-results/.
  • Cuadrilla Resources Ltd. 2020. Community liaison group meeting minutes. Accessed January 21, 2020. https://cuadrillaresources.uk/our-sites/preston-new-road/preston-new-road-documents/.
  • Dlugokency, E. 2020. NOAA/ESRL. Accessed 29, 2020. https://esrl.noaa.gov/gmd/ccgg/trends_ch4/.
  • Ecoinvent. 2018. Ecoinvent database v3.5. Zurich, Switzerland: The Ecoinvent Centre.
  • Element Energy, 2019. Assessment of options to reduce emissions from fossil fuel production and fugitive emissions. Final Report for The Committee on Climate Change. Cambridge, UK. Accessed Augest 30, 2020. https://www.theccc.org.uk/publication/assessment-of-options-to-reduce-emissions-from-fossil-fuel-production-and-fugitive-emissions/.
  • Environment Agency. 2019a. Environment agency: EPR compliance assessment report for preston new road exploration site EPR/AB3101MW. Report ID: UP3431VF/0328941. issued March 28, 2019. Accessed Augest 30, 2020. https://consult.environment-agency.gov.uk/onshore-oil-and-gas/information-on-cuadrillas-preston-new-road-site/supporting_documents/Preston%20New%20Road%20Compliance%20with%20Permit%20Assessment%20Report%2027.02.2019%20_%20Flare%20Operations.pdf
  • Environment Agency. 2019b. personal communication. 15 August and 26 September.
  • EPA. 2014. Oil and natural gas sector liquids unloading processes. U.S. EPA Office of Air Quality Planning and Standards. Accessed Augest 30, 2020. https://www.ourenergypolicy.org/wp-content/uploads/2014/04/epa-liquids-unloading.pdf
  • Flesch, T. K., J. D. Wilson, and E. Yee. 1995. Backward-time Lagrangian stochastic dispersion models, and their application to estimate gaseous emissions. J. Appl. Meteorol. 34:1320–32. doi:10.1175/1520-0450(1995)034<320:btlsdm>2.0.CO;2.
  • Flesch, T. K., L. A. Harper, J. M. Powell, and J. D. Wilson. 2009. Inverse dispersion calculation of ammonia emissions from Wisconsin dairy farms. Trans. ASABE 52:253–65. doi:10.13031/2013.25946.
  • Foster-Wittig, T. A., E. D. Thoma, and J. D. Albertson. 2015. Estimation of point source fugitive emission rates from a single sensor time series: A conditionally-sampled Gaussian plume reconstruction. Atmos. Environ. 115:101–09. doi:10.1016/j.atmosenv.2015.05.042.
  • Gu, H. 1995. Transient aspects of unloading oil and gas wells with coiled tubing. Soc. Petrol. Eng. J. SPE-29541-MS. doi:10.2118/29541-MS.
  • Hausmann, P., R. Sussmann, and D. Smale. 2016. Contribution of oil and natural gas production to renewed increase in atmospheric methane (2007–2014): Top-down estimate from ethane and methane column observations. Atmos. Chem. Phys. 16:3227–44. doi:10.5194/acp-16-3227-2016.
  • Howarth, R. W. 2019. Ideas and perspectives: Is shale gas a major driver of recent increase in global atmospheric methane? Biogeosciences 16:3033–46. doi:10.5194/bg-16-3033-2019.
  • Hultman, N., D. Rebois, M. Scholten and C. Ramig. 2011. The greenhouse impact of unconventional gas for electricity generation. Environ. Res. Lett. 6:049504. doi:10.1088/1748-9326/4/049504.
  • Jiang, M., W. M. Griffin, C. Hendrickson, P. Jaramillo, J. Van Briesen, and A. Venkatesh. 2011. Life cycle greenhouse gas emissions of Marcellus shale gas. Env. Res. Lett. 6 (3). doi: 10.1088/1748-9326/6/3/034014.
  • Lowry, D., R. E. Fisher, J. L. France, M. Coleman, M. Lanoisellé, G. Zazzer, E. Nisbet, J. T. Shaw, G. Allen, J. Pitt, et al. 2020. Environmental baseline monitoring for shale gas development: Identification and geochemical characterisation of local source emissions of methane to atmosphere. Sci. Tot. Env. 708:134600. doi:10.1016/j.scitotenv.2019.134600.
  • MacKay, D. J. C., and T. J. Stone. 2013. Potential greenhouse gas emissions associated with shale gas extraction and use. London: Department of Energy & Climate Change.
  • Milkov, A. V., S. Schwietzke, G. Allen, O. A. Sherwood, and G. Etiope. 2020. Using global isoptic data to constrain the role of shale gas production in recent increases in atmospheric methane. Sci. Rep. 10:4199. doi:10.1038/s41598-020-61035-w.
  • Myhre, G., D. Shindell, F.-M. Bréon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, et al. 2013. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, ed. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P. M. Midgley, 710–720. Cambridge, UK and New York, NY: Cambridge University Press.
  • Nisbet, E. G., E. J. Dlugokencky, M. R. Manning, D. Lowry, R. E. Fisher, J. L. France, S. E. Michel, J. B. Miller, J. W. C. White, B. Vaughn, et al. 2016. Rising atmospheric methane: 2007–2014 growth and isotopic shift. Global Biogeochem. Cy. 30:1356–70. doi:10.1002/2016GB005406.
  • O’Shea, S. J., S. J.-B. Bauguitte, M. W. Gallagher, D. Lowry, and C. J. Percival. 2013. Development of a cavity-enhanced absorption spectrometer for airborne measurements of CH4 and CO2. Atmos. Meas. Tech. 6:1095–109. doi:10.5194/amt-6-1095-2013.
  • Ofgem. 2019. Typical domestic consumption values. London, UK: Office of Gas and Electricity Markets. Accessed August 14, 2019. https://www.ofgem.gov.uk/gas/retail-market/monitoring-data-and-statistics/typical-domestic-consumption-values.
  • Pasquill, F. 1961. The estimation of the dispersion of wind-borne material. Meteorol. Mag. 90 (1063):33–49.
  • Prinn, R. G., R. F. Weiss, J. Arduini, T. Arnold, P. J. Fraser, A. L. Ganesan, J. Gasore, C. M. Harth, O. Hermansen, J. Kim, et al. 2020. The ALE/GAGE/AGAGE data base. http://agage.mit.edu/data. or The ALE/GAGE/AGAGE Network (DB 1001), http://cdiac.ess-dive.lbl.gov/ndps/alegage.html (10.3334/CDIAC/atg.db1001).
  • Purvis, R. M. 2016. Environmental baseline project: Air quality, greenhouse gas, volatile organic compounds (VOCs) and surface meteorological measurements from Kirby Misperton and Little Plumpton. Centre for Environmental Data Analysis. Accessed August, 2019. http://catalogue.ceda.ac.uk/uuid/17381cd841ba46aca622307cdcf95da7.
  • Purvis, R. M., A. C. Lewis, J. R. Hopkins, S. E. Wilde, R. E. Dunmore, G. Allen, J. Pitt, and R. S. Ward. 2019. Effects of ‘pre-fracking’ operations on ambient air quality at a shale gas exploration site in rural North Yorkshire, England. Sci. Tot. Env. 673:445–54. doi:10.1016/j.scitotenv.2019.04.077.
  • Rich, A., J. P. Grover, and M. L. Sattler. 2014. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale. J. Air Waste Manag. Assoc. 64:61–72. doi:10.1080/10962247.2013.832713.
  • Riddick, S. N., S. Connors, A. D. Robinson, A. J. Manning, P. S. D. Jones, D. Lowry, E. Nisbet, R. L. Skelton, G. Allen, J. Pitt, et al. 2017. Estimating the size of a methane emission point source at different scales: From local to landscape. Atmos. Chem. Phys. 17:7839–51. doi:10.5194/acp-17-7839-2017.
  • Rigby, M., S. A. Montzka, R. G. Prinn, J. W. C. White, D. Young, S. O’Doherty, M. F. Lunt, A. L. Ganesan, A. J. Manning, P. G. Simmonds, et al. 2017. Role of atmospheric oxidation in recent methane growth. P. Natl. Acad. Sci. USA 114:5373–77. doi:10.1073/pnas.1616426114.
  • Robertson, A. M., R. Edie, D. Snare, J. Soltis, R. A. Field, M. D. Burkhart, C. S. Bell, D. Zimmerle, and S. M. Murphy. 2017. Variation in methane emission rates from well pads in four oil and gas basins with contrasting production volumes and compositions. Environ. Sci. Technol. 51:8832–40. doi:10.1021/acs.est.7b00571.
  • Robinson, C., K. Driver, M. D’Antoni, R. Liu, B. Barlow, W. Funk, and A. Ravikumar. 2019. Cap-op energy British Columbia oil and gas methane emissions field study. Prepared for the British Columbia Government and Environment and Climate Change Canada. Accessed August 24, 2019. https://www2.gov.bc.ca%2Fassets%2Fgov%2Fenvironment%2Fclimate-change%2Find%2Freporting-emissions%2F2019%2Fbritish_columbia_oil_and_gas_methane_emissions_field_study.pdf&usg=AOvVaw2H9mgOGPo4_3rsAUCtTPaY.
  • Saide, P. E., D. F. Steinhoff, B. Kosovic, J. Weil, N. Downey, D. Blewitt, S. R. Hanna, and L. D. Monache. 2018. Evaluating methods to measure methane emissions from oil and gas production facilities using LES simulations. Environ. Sci. Technol. 52:11206–14. doi:10.1021/acs.est.8b01767.
  • Schaefer, H., S. E. Mikaloff-Fletcher, C. Veidt, K. R. Lassey, G. W. Brailsford, T. M. Bromley, E. J. Dlugokencky, S. E. Michel, J. B. Miller, I. Levin, et al. 2016. A 21st century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4. Science 352:80–84. doi:10.1126/science.aad2705.
  • Schwietzke, S., O. A. Sherwood, L. M. P. Bruhwiler, J. B. Miller, G. Etiiope, E. J. Dlugokencky, S. E. Michel, V. A. Arling, B. H. Vaughn, J. W. C. White, et al. 2016. Upward revision of global fossil fuel methane emissions based on isotope database. Nature 538:88–91. doi:10.1038/nature19797.
  • Shah, A., H. Ricketts, J. Pitt, J. Shaw, K. Kabbabe, B. Leen, and G. Allen. 2020a. Unmanned aerial vehicle observations of cold venting from exploratory hydraulic fracturing in the United Kingdom. Env. Res. Lett. 2:021003. doi:10.1088/2515-7620/ab716d.
  • Shah, A., J. R. Pitt, H. Ricketts, J. B. Leen, P. I. Williams, K. Kabbabe, M. W. Gallagher, and G. Allen. 2020b. Testing the near-field Gaussian plume inversion flux quantification technique using unmanned aerial vehicle sampling. Atmos. Meas. Tech. 13:1467–84. doi:10.5194/amt-13-1467-2020.
  • Shaw, J. T., G. Allen, J. Pitt, M. I. Mead, R. M. Purvis, R. Dunmore, S. Wilde, P. Barker, P. Bateman, C. Percival, et al. 2019. A baseline of atmospheric greenhouse gases around prospective UK shale gas sites. Sci. Tot. Env. 684:1–13. doi:10.1016/j.scitotenv.2019.05.266.
  • Skone, T. J. 2011. Life cycle greenhouse gas inventory of natural gas extraction, delivery and electricity production. DOE/NETL-2011/1522. National Energy Technology Laboratory. Accessed Augest 30, 2020. https://fossil.energy.gov/ng_regulation/sites/default/files/programs/gasregulation/authorizations/2012/applications/sierra_exhibits_12_100_LNG/Ex._89_-_Skone_Life_Cycle_GHG_Inventory_.pdf
  • Stamford, L., and A. Azapagic. 2012. Life cycle sustainability assessment of electricity options for the UK. Int. J. Energy Res. 36:14. doi:10.1002/er.2962.
  • Stamford, L., and A. Azapagic. 2014. Life cycle environmental impacts of UK shale gas. Appl. Energy 134:506–18. doi:10.1016/j.apenergy.2014.08.063.
  • Turner, A. J., C. Frankenberg, P. O. Wennberg, and D. J. Jacob. 2017. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. P. Natl. Acad. Sci. USA 114:5367–72. doi:10.1073/pnas.1616020114.
  • Turner, D. B. 1970. Workbook of atmospheric dispersion estimates, PHS publication No. 999-AP-26. US Department of Health, Education and Welfare, National Air Pollution Control Administration, Cincinnati, OH.
  • United Kingdom Onshore Oil and Gas, UKOOG. 2019. Updated shale gas production scenarios. London, UK. Accessed Augest 30, 2020. https://www.ukoog.org.uk/images/ukoog/pdfs/Updated%20shale%20gas%20scenarios%20March%202019%20website.pdf.
  • US EPA. 2014. Draft “Other Test Method” OTM 33 Geospatial Measurement of Air Pollution, Remote Emissions Quantifications (GMAP-REQ). Accessed June 24, 2019. https://www.epa.gov/emc.
  • Vaughn, T. L., C. S. Bell, C. K. Pickering, S. Schwietzke, G. A. Heath, G. Pétron, D. J. Zimmerle, R. C. Schnell, and D. Nummedal. 2018. Temporal variability largely explains top-down/bottom-up difference in methane emission estimates from a natural gas production region. Proc. Natl. Acad. Sci. 115:11712–17. doi:10.1073/pnas.1805687115.
  • Ward, R. S., P. L. Smedley, G. Allen, B. J. Baptie, M. R. Cave, Z. Daraktchieva, R. Fisher, D. Hawthorn, D. G. Jones, A. Lewis, et al. 2018. Environmental baseline monitoring project: Phase III final report. OR/18/026. British Geological Survey, Nottingham, UK. (Unpublished).
  • Ward, R. S., P. L. Smedley, G. Allen, B. J. Baptie, Z. Daraktchieva, A. Horleston, D. G. Jones, C. J. Jordan, A. Lewis, D. Lowry, et al. 2017. Environmental baseline monitoring project: Phase II final report. OR/17/049. British Geological Survey, Nottingham, UK. (Unpublished).
  • Weber, C. L., and C. Clavin. 2012. Life cycle carbon footprint of shale gas: Review of evidence and implications. Environ. Sci. Technol. 46 (11):5688–95. doi:10.1021/es300375n.
  • Williams, P. J., M. Reeder, N. J. Pekney, D. Risk, J. Osborne, and M. McCawley. 2018. Atmospheric impacts of a natural gas development within the urban context of Morgantown, West Virginia. Sci. Tot. Env. 639:404–16. doi:10.1016/j.scitotenv.2018.04.422.
  • Worden, J. R., A. A. Bloom, S. Pandey, Z. Jiang, H. M. Worden, T. W. Walter, S. Houweling, and T. Röckmann. 2017. Reduced biomass burning emissions reconcile conflicting estimates of the post-2006 atmospheric methane budget. Nat. Commun. 8:2227. doi:10.1038/s41467-017-02246-0.