3,574
Views
16
CrossRef citations to date
0
Altmetric
2020 Critical Review Discussion

Wildfire and prescribed burning impacts on air quality in the United States

, , , , , , , , & show all

References

  • Adetona, O., T. E. Reinhardt, J. Domitrovich, G. Broyles, A. M. Adetona, M. T. Kleinman, R. D. Ottmar, and L. P. Naeher. 2016. Review of the health effects of wildland fire smoke on wildland firefighters and the public. Inhal. Toxicol. 28:95–139. doi:10.3109/08958378.2016.1145771.
  • AIRNOW. 2020. How is the NowCast algorithm used to report current air quality? Research Triangle Park, NC: U.S. Environmental Protection Agency. Accessed August 16, 2020. https://www.airnow.gov/faqs/how-nowcast-algorithm-used-report/.
  • Akagi, S. K., R. J. Yokelson, I. R. Burling, S. Meinardi, I. Simpson, D. R. Blake, G. R. McMeeking, A. Sullivan, T. Lee, S. Kreidenweis, et al. 2013. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes. Atmos. Chem. Phys. 13:1141–65. doi:10.5194/acp-13-1141-2013.
  • Andreae, M. O., and P. Merlet. 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochem. Cycles 15:955–66. doi:10.1029/2000GB001382.
  • Baker, K. R., V. Rao, J. Beidler, J. Vukovich, S. Koplitz, and L. Avey. 2020. Illustrating wildland fire air quality impacts using an EPA emission inventory. EM 24:26–31.
  • Bertrand, A., G. Stefenelli, C. N. Jen, S. M. Pieber, E. A. Bruns, H. Y. Ni, B. Temime-Roussel, J. G. Slowik, A. H. Goldstein, I. El Haddad, et al. 2018. Evolution of the chemical fingerprint of biomass burning organic aerosol during aging. Atmos. Chem. Phys. 18 (10):7607–24. doi:10.5194/acp-18-7607-2018.
  • Bond, T. C., D. G. Streets, K. F. Yarber, S. M. Nelson, J. H. Woo, and Z. Klimont. 2004. A technology-based global inventory of black and organic carbon emissions from combustion. J. Geophys. Res. Atmos. 109:D14203. doi:doi:10.1029/2003JD003697.
  • Cao, J. J., Q. Y. Wang, L. Li, Y. Zhang, J. Tian, L.-W. A. Chen, S. H. H. Ho, X. L. Wang, J. C. Chow, and J. G. Watson. 2020. Evaluation of the oxidation flow reactor for particulate matter emission limit certification. Atmos. Environ. 224:117086. doi:10.1016/j.atmosenv.2019.117086.
  • Capes, G., B. Johnson, G. McFiggans, P. I. Williams, J. Haywood, and H. Coe. 2008. Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios. J. Geophys. Res. Atmos. 113. doi:10.1029/2008JD009845.
  • Chen, L.-W. A., H. Moosmüller, W. P. Arnott, J. C. Chow, J. G. Watson, R. A. Susott, R. E. Babbitt, C. E. Wold, E. N. Lincoln, and W. M. Hao. 2007. Emissions from laboratory combustion of wildland fuels: Emission factors and source profiles. Environ. Sci. Technol. 41 (12):4317–25. doi:10.1021/es062364i.
  • Chow, J. C., J. J. Cao, L.-W. A. Chen, X. L. Wang, Q. Y. Wang, J. Tian, S. S. H. Ho, A. C. Watts, T. N. Carlson, S. D. Kohl, et al. 2019a. Changes in PM2.5 peat combustion source profiles with atmospheric aging in an oxidation flow reactor. Atmos. Meas. Tech. 12:5475–501. doi:10.5194/amt-2019-198.
  • Chow, J. C., X. L. Wang, M. C. Green, and J. G. Watson. 2019b. Obtaining more information from existing filter samples in PM speciation networks. EM 23:15–19.
  • Chow, J. C., X. L. Wang, B. J. Sumlin, S. B. Gronstal, L.-W. A. Chen, D. L. Trimble, S. D. Kohl, S. R. Mayorga, G. M. Riggio, P. R. Hurbain, et al. 2015. Optical calibration and equivalence of a multiwavelength thermal/optical carbon analyzer. Aerosol Air Qual. Res. 15:1145–59. doi:doi:10.4209/aaqr.2015.02.0106.
  • Chow, J. C., J. G. Watson, L.-W. A. Chen, M.-C. O. Chang, N. F. Robinson, D. L. Trimble, and S. D. Kohl. 2007. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc. 57:1014–23. doi:10.3155/1047-3289.57.9.1014.
  • Chow, J. C., J. G. Watson, M. C. Green, X. L. Wang, L.-W. A. Chen, D. L. Trimble, P. M. Cropper, S. D. Kohl, and S. B. Gronstal. 2018. Separation of brown carbon from black carbon for IMPROVE and CSN PM2.5 samples. J. Air Waste Manage. Assoc. 68:494–510. doi:10.1080/10962247.2018.1426653.
  • Chow, J. C., J. G. Watson, J. L. Mauderly, D. L. Costa, R. E. Wyzga, S. Vedal, G. M. Hidy, S. L. Altshuler, D. Marrack, J. M. Heuss, et al. 2006. Health effects of fine particulate air pollution: Lines that connect: Critical review discussion. J. Air Waste Manage. Assoc. 56:1368–80. doi:10.1080/10473289.2006.10464545.
  • Collier, S., S. Zhou, T. B. Onasch, D. A. Jaffe, L. Kleinman, A. J. Sedlacek, N. L. Briggs, J. Hee, E. Fortner, J. E. Shilling, et al. 2016. Regional influence of aerosol emissions from wildfires driven by combustion efficiency: Insights from the BBOP campaign. Environ. Sci. Technol. 50:8613–22. doi:10.1021/acs.est.6b01617.
  • Crabbe, H. 2012. Risk of respiratory and cardiovascular hospitalisation with exposure to bushfire particulates: New evidence from Darwin, Australia. Environ. Geochem. Health 34:697–709. doi:10.1007/s10653-012-9489-4.
  • Cubison, M. J., A. M. Ortega, P. L. Hayes, D. K. Farmer, D. Day, M. J. Lechner, W. H. Brune, E. Apel, G. S. Diskin, J. A. Fisher, et al. 2011. Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies. Atmos. Chem. Phys. 11:12049–64. doi:10.5194/acp-11-12049-2011.
  • Deflorio-Barker, S., J. Crooks, J. Reyes, and A. G. Rappold. 2019. Cardiopulmonary effects of fine particulate matter exposure among older adults, during wildfire and non-wildfire periods, in the United States 2008-2010. Environ. Health Perspect. 127. doi:10.1289/EHP3860.
  • Delfino, R. J., N. Staimer, T. Tjoa, A. Polidori, M. Arhami, D. L. Gillen, M. T. Kleinman, N. D. Vaziri, J. Longhurst, F. Zaldivar, et al. 2008. Circulating biomarkers of inflammation, antioxidant activity, and platelet activation are associated with primary combustion aerosols in subjects with coronary artery disease. Environ. Health Perspect. 116 (7):898–906. doi:10.1289/ehp.11189.
  • DeMerritt, E. 2020. Protecting air quality and public health during wildfires. EM 24:21–25.
  • Duclos, P., L. M. Sanderson, and M. Lipsett. 1990. The 1987 forest fire disaster in California: Assessment of emergency room visits. Arch. Environ. Health 45 (1):53–58. doi:10.1080/00039896.1990.9935925.
  • Eklund, A. G., J. C. Chow, D. S. Greenbaum, G. M. Hidy, M. T. Kleinman, J. G. Watson, and R. E. Wyzga. 2014. Public health and components of particulate matter: The changing assessment of black carbon-Critical review discussion. J. Air Waste Manage. Assoc. 64 (11):1221–31. doi:10.1080/10962247.2014.960218.
  • Ferris, B. G., Jr. 1978. Critical review: Health effects of exposure to low levels of regulated air pollutants: A critical review. J. Air Pollut. Control Assoc. 28:482–97. doi:10.1080/00022470.1978.10470621.
  • Fleming, L. T., P. Lin, J. M. Roberts, V. Selimovic, R. Yokelson, J. Laskin, A. Laskin, and S. A. Nizkorodov. 2020. Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmos. Chem. Phys 20 (2):1105–29. doi:10.5194/acp-20-1105-2020.
  • Freeburn, S. A. 2020. Community wildfire recovery: Environmental and public health perspectives. EM 24:8.
  • Goldstein, B. D. 1983. Toxic substances in the atmospheric environment - A critical review. J. Air Pollut. Control Assoc 33 (5):454–67. doi:10.1080/00022470.1983.10465593.
  • Grahame, T. J., R. J. Klemm, and R. B. Schlesinger. 2014. Public health and components of particulate matter: The changing assessment of black carbon: Critical review. J. Air Waste Manage. Assoc. 64:620–60. doi:10.1080/10962247.2014.912692.
  • Grieshop, A. P., N. M. Donahue, and A. L. Robinson. 2009a. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 2: Analysis of aerosol mass spectrometer data. Atmos. Chem. Phys. 9:2227–40. doi:10.5194/acp-9-2227-2009.
  • Grieshop, A. P., J. M. Logue, N. M. Donahue, and A. L. Robinson. 2009b. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: Measurement and simulation of organic aerosol evolution. Atmos. Chem. Phys. 9:1263–77. doi:10.5194/acp-9-1263-2009.
  • Hennigan, C. J., M. A. Miracolo, G. J. Engelhart, A. A. May, A. A. Presto, T. Lee, A. P. Sullivan, G. R. McMeeking, H. Coe, C. E. Wold, et al. 2011. Chemical and physical transformations of organic aerosol from the photo-oxidation of open biomass burning emissions in an environmental chamber. Atmos. Chem. Phys. 11:7669–86. doi:10.5194/acp-11-7669-2011.
  • Hu, Y. Q., N. Fernandez-Anez, T. E. L. Smith, and G. Rein. 2018. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27 (5):293–312. doi:10.1071/wf17084.
  • Hunter, M. E., and M. D. Robles. 2020. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manage. 475:118435. doi:10.1016/j.foreco.2020.118435.
  • Jaffe, D. A., S. M. O’Neill, N. K. Larkin, A. L. Holder, D. L. Peterson, J. E. Halofsky, and A. G. Rappold. 2020a. Wildfire and prescribed burning impacts on air quality in the United States. J. Air Waste Manage. Assoc. 70 (6):583–615. doi:10.1080/10962247.2020.1749731.
  • Jaffe, D. A., S. M. O’Neill, N. K. Larkin, A. L. Holder, D. L. Peterson, J. E. Halofsky, and A. G. Rappold. 2020b. Critical review summary: Wildfire and prescribed burning impacts on air quality in the United States. EM 24:32–37.
  • Johansson, K. O., T. Dillstrom, M. Monti, F. El Gabaly, M. F. Campbell, P. E. Schrader, D. M. Popolan-Vaida, N. K. Richards-Henderson, K. R. Wilson, A. Violi, et al. 2016. Formation and emission of large furans and oxygenated hydrocarbons from flames. Proc. Natl. Acad. Sci. 113 (30):8374–79. doi:10.1073/pnas.1604772113.
  • Jolleys, M. D., H. Coe, G. McFiggans, G. Capes, J. D. Allan, J. Crosier, P. I. Williams, G. Allen, K. N. Bower, J. L. Jimenez, et al. 2012. Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: A meta-analysis of four regions. Environ. Sci. Technol. 46 (24):13093–102. doi:10.1021/es302386v.
  • Kim, Y. H., S. H. Warren, Q. T. Krantz, C. King, R. Jaskot, W. T. Preston, B. J. George, M. D. Hays, M. S. Landis, M. Higuchi, et al. 2018. Mutagenicity and lung toxicity of smoldering vs. flaming emissions from various biomass fuels: Implications for health effects from wildland fires. Environ. Health Perspect. 126 (1):017011. doi:10.1289/ehp2200.
  • Kinsman, J. D. 2020. Wildfire. EM 24:6–7.
  • Kline, J. D. 2004. Issues in evaluating the costs and benefits of fuel treatments to reduce wildfire in the nation’s forests. Portland, OR: US Department of Agriculture, Forest Service, Pacific Northwest Research Station. Accessed August 16, 2020. https://www.srs.fs.usda.gov/pubs/7471.
  • Kochi, I., P. A. Champ, J. B. Loomis, and G. H. Donovan. 2012. Valuing mortality impacts of smoke exposure from major southern California wildfires. J Forest Econ. 18 (1):61–75. doi:10.1016/j.jfe.2011.10.002.
  • Koss, A. R., K. Sekimoto, J. B. Gilman, V. Selimovic, M. M. Coggon, K. J. Zarzana, B. Yuan, B. M. Lerner, S. S. Brown, J. L. Jimenez, et al. 2018. Non-methane organic gas emissions from biomass burning: Identification, quantification, and emission factors from PTR-ToF during the FIREX 2016 laboratory experiment. Atmos. Chem. Phys. 18:3299–319. doi:10.5194/acp-18-3299-2018.
  • Lahm, P., and N. K. Larkin. 2020. The interagency wildland fire air quality response program. EM 24:9–15.
  • Loehle, C. 2004. Applying landscape principles to fire hazard reduction. For. Ecol. Manage. 298:261–67. doi:10.1016/j.foreco.2004.04.010.
  • Martin, K. L., I. C. Hanigan, G. G. Morgan, S. B. Henderson, and F. H. Johnston. 2013. Air pollution from bushfires and their association with hospital admissions in Sydney, Newcastle and Wollongong, Australia 1994-2007. Aust N Z J Public Health 37 (3):238–43. doi:10.1111/1753-6405.12065.
  • May, A. A., T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis. 2015. Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes. Atmos. Chem. Phys. 15 (11):6323–35. doi:10.5194/acp-15-6323-2015.
  • McClure, C. D., and D. A. Jaffe. 2018. US particulate matter air quality improves except in wildfire-prone areas. Proc. Natl. Acad. Sci. U.S.A. 115:7901–06. doi:10.1073/pnas.1804353115.
  • McMeeking, G. R., S. M. Kreidenweis, S. Baker, C. M. Carrico, J. C. Chow, J. L. Collett Jr., W. M. Hao, A. S. Holden, T. W. Kirchstetter, W. C. Malm, et al. 2009. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 114. doi:10.1029/2009JD011836.
  • Mercer, D. E., R. G. Haight, and J. P. Prestemon. 2008. Analyzing trade-offs between fuels management, suppression, and damages from wildfire. In Thee economics of forest disturbances, ed. T. P. Holmes, J. P. Prestemon and K. L. Abt, 247–72. Dordrecht: Springer.
  • Mukerjee, D. 1998. 1998 Critical Review - Assessment of risk from multimedia exposures of children to environmental chemicals. J. Air Waste Manage. Assoc. 48:483–501. doi:10.1080/10473289.1998.10463703.
  • Navarro, K. M., D. Schweizer, J. R. Balmes, and R. Cisneros. 2018. A review of community smoke exposure from wildfire compared to prescribed fire in the United States. Atmosphere 9. doi:10.3390/atmos9050185.
  • Nolte, C. G., J. J. Schauer, G. R. Cass, and B. R. T. Simoneit. 2001. Highly polar organic compounds present in wood smoke and in the ambient atmosphere. Environ. Sci. Technol. 35:1912–19. doi:10.1021/es001420r.
  • North, M. P., S. L. Stephens, B. M. Collins, J. K. Agee, G. Aplet, J. F. Franklin, and P. Z. Fule. 2015. Reform forest fire management. Science 349:1280–81. doi:10.1126/science.aab2356.
  • Ortega, A. M., D. A. Day, M. J. Cubison, W. H. Brune, D. Bon, J. A. de Gouw, and J. L. Jimenez. 2013. Secondary organic aerosol formation and primary organic aerosol oxidation from biomass-burning smoke in a flow reactor during FLAME-3. Atmos. Chem. Phys. 13:11551–71. doi:10.5194/acp-13-11551-2013.
  • Page, S. E., J. O. Rieley, and C. J. Banks. 2011. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17:798–818. doi:10.1111/j.1365-2486.2010.02279.x.
  • Pang, H. W., Q. Zhang, X. H. Lu, K. N. Li, H. Chen, J. M. Chen, X. Yang, Y. G. Ma, J. L. Ma, and C. Huang. 2019. Nitrite-mediated photooxidation of vanillin in the atmospheric aqueous phase. Environ. Sci. Technol. 53 (24):14253–63. doi:10.1021/acs.est.9b03649.
  • Pope, C. A., and D. W. Dockery. 2006. Critical review: Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56:709–42. doi:10.1080/10473289.2006.10464485.
  • PurpleAir. 2020. PurpleAir: Air quality monitoring. Salt Lake City, UT. Accessed August 16, 2020. https://www.purpleair.com/.
  • Reid, C. E., M. Brauer, F. H. Johnston, M. Jerrett, J. R. Balmes, and C. T. Elliott. 2016. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 124:1334–43. doi:10.1289/ehp.1409277.
  • Rein, G., S. Cohen, and A. Simeoni. 2009. Carbon emissions from smouldering peat in shallow and strong fronts. Proc Combust Inst 32:2489–96. doi:0.1016/j.proci.2008.07.008.
  • Samburova, V., J. Connolly, M. Gyawali, R. L. N. Yatavelli, A. C. Watts, R. K. Chakrabarty, B. Zielinska, H. Moosmuller, and A. Khlystov. 2016. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity. Sci. Total Environ. 568:391–401. doi:10.1016/j.scitotenv.2016.06.026.
  • Sasser, E. N., and P. Lahm. 2020. Reducing risk from wildfire smoke. EM 24:16–20.
  • Schauer, J. J., M. J. Kleeman, G. R. Cass, and B. R. T. Simoneit. 2001. Measurement of emissions from air pollution sources - 3. C1-C29 organic compounds from fireplace combustion of wood. Environ. Sci. Technol. 35:1716–28. doi:10.1021/es001331e.
  • Schweizer, D., R. Cisneros, and M. Buhler. 2019. Coarse and fine particulate matter components of wildland fire smoke at Devils Postpile National Monument, California, USA. Aerosol Air Qual. Res. 19:1463–70. doi:10.4209/aaqr.2019.04.0219.
  • Shaposhnikov, D., B. Revich, T. Bellander, G. B. Bedada, M. Bottai, T. Kharkova, E. Kvasha, E. Lezina, T. Lind, E. Semutnikova, et al. 2014. Mortality related to air pollution with the Moscow heat wave and wildfire of 2010. Epidemiology 25:359–64. doi:10.1097/EDE.0000000000000090.
  • Simoneit, B. R. T. 1999. A review of biomarker compounds as source indicators and tracers for air pollution. Environ. Sci. Pollut. Res. 6:159–69. doi:10.1007/BF02987621.
  • Smith, J. D., V. Sio, L. Yu, Q. Zhang, and C. Anastasio. 2014. Secondary organic aerosol production from aqueous reactions of atmospheric phenols with an organic triplet excited sState. Environ. Sci. Technol. 48:1049–57. doi:10.1021/es4045715.
  • Snider, G., P. J. Daugherty, and D. Wood. 2006. The irrationality of continued fire suppression: An avoided cost analysis of fire hazard reduction treatments versus no treatment. J. For. 104:431–37.
  • Stockwell, C. E., T. Jayarathne, M. A. Cochrane, K. C. Ryan, E. I. Putra, B. H. Saharjo, A. D. Nurhayati, I. Albar, D. R. Blake, I. J. Simpson, et al. 2016. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Nino. Atmos. Chem. Phys. 16:11711–32. doi:10.5194/acp-16-11711-2016.
  • Stowell, J. D., G. Geng, E. Saikawa, H. H. Chang, J. Fu, C. E. Yang, Q. Zhu, Y. Liu, and M. J. Strickland. 2019. Associations of wildfire smoke PM2.5 exposure with cardiorespiratory events in Colorado 2011-2014. Environ. Intl. 133:105151. doi:10.1016/j.envint.2019.105151.
  • Sun, Y. L., Q. Zhang, C. Anastasio, and J. Sun. 2010. Insights into secondary organic aerosol formed via aqueous-phase reactions of phenolic compounds based on high resolution mass spectrometry. Atmos. Chem. Phys. 10:4809–22. doi:10.5194/acp-10-4809-2010.
  • Tsirigotis, P. 2019. Guidance for regional haze state implementation plans for the second implementation period. Research Triangle Park, NC: U.S. Environmental Protection Agency. Accessed August 16, 2020. https://www.epa.gov/sites/production/files/2019-08/documents/8-20-2019_-_regional_haze_guidance_final_guidance.pdf.
  • U.S.EPA. 2016. The final 2016 exceptional events rule, supporting guidance documents, updated FAQs, and other rule implementation resources. Research Triangle Park, NC: U.S. Environmental Protection Agency. Accessed August 16, 2020. https://www.epa.gov/air-quality-analysis/final-2016-exceptional-events-rule-supporting-guidance-documents-updated-faqs.
  • U.S.EPA. 2017. Protection of isibility: Amendments to requirements for state plans. Fed. Regist. 82: 3078–128.
  • Vedal, S. 1997. Critical review - Ambient particles and health: Lines that divide. J. Air Waste Manage. Assoc. 47:551–81. doi:10.1080/10473289.1997.10463922.
  • Watson, J. G., J. J. Cao, L.-W. A. Chen, Q. Y. Wang, J. Tian, X. L. Wang, S. B. Gronstal, S. S. H. Ho, A. C. Watts, and J. C. Chow. 2019. Gaseous, PM2.5 mass, and speciated emission factors from laboratory chamber peat combustion. Atmos. Chem. Phys. 19:14173–93. doi:10.5194/acp-19-14173-2019.
  • Watson, J. G., R. E. Wyzga, R. T. Burnett, J. J. Vostal, I. Romieu, J. C. Chow, J. T. Holcombe, F. W. Lipfert, D. Marrack, R. J. Thompson, et al. 1997. Ambient particles and health - Lines that divide: 1997 critical review discussion:. J. Air Waste Manage. Assoc. 47:995–1008. doi:10.1080/10473289.1997.10463950.
  • Williamson, G. J., D. M. J. S. Bowman, O. F. Price, S. B. Henderson, and F. H. Johnston. 2016. A transdisciplinary approach to understanding the health effects of wildfire and prescribed fire smoke regimes. Environ. Res. Lett. 11:125009. doi:10.1088/1748-9326/11/12/125009.
  • WRAP. 2001. Policy for categorizing fire emissions. Ft. Collins, CO: Western Regional Air Partnership. Accessed August 16, 2020. https://www.wrapair.org/forums/fejf/documents/nbtt/FirePolicy.pdf
  • Yee, L. D., K. E. Kautzman, C. L. Loza, K. A. Schilling, M. M. Coggon, P. S. Chhabra, M. N. Chan, A. W. H. Chan, S. P. Hersey, J. D. Crounse, et al. 2013. Secondary organic aerosol formation from biomass burning intermediates: Phenol and methoxyphenols. Atmos. Chem. Phys. 13 (16):8019–43. doi:10.5194/acp-13-8019-2013.
  • Yu, L., J. Smith, A. Laskin, C. Anastasio, J. Laskin, and Q. Zhang. 2014. Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical. Atmos. Chem. Phys. 14:13801–16. doi:10.5194/acp-14-13801-2014.
  • Yu, L., J. Smith, A. Laskin, K. M. George, C. Anastasio, J. Laskin, A. M. Dillner, and Q. Zhang. 2016. Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: Competition among oligomerization, functionalization, and fragmentation. Atmos. Chem. Phys. 16:4511–27. doi:10.5194/acp-16-4511-2016.
  • Yuan, B., J. Liggio, J. Wentzell, S. M. Li, H. Stark, J. M. Roberts, J. Gilman, B. Lerner, C. Warneke, R. Li, et al. 2016. Secondary formation of nitrated phenols: Insights from observations during the Uintah BasinWinter Ozone Study (UBWOS) 2014. Atmos. Chem. Phys. 16:2139–53. doi:10.5194/acp-16-2139-2016.
  • Zhang, H. X., B. Yang, Y. F. Wang, J. N. Shu, P. Zhang, P. K. Ma, and Z. Li. 2016. Gas-phase reactions of methoxyphenols with NO3 radicals: Kinetics, products, and mechanisms. J Phys Chem A. doi:10.1021/acs.jpca.5b10406.
  • Zhang, M. M., A. Buekens, and X. D. Li. 2017. Dioxins from biomass combustion: An overview. Waste Biomass Valori 8:1–20. doi:10.1007/s12649-016-9744-5.
  • Zhao, F. J., Y. Q. Liu, S. Goodrick, B. Hornsby, and J. D. Schardt. 2019. The contribution of duff consumption to fire emissions and air pollution of the rough ridge fire. Int J Wildland Fire 28 (12):993–1004. doi:10.1071/WF18205.
  • Zhou, S., S. Collier, D. A. Jaffe, N. L. Briggs, J. Hee, A. J. Sedlacek, L. Kleinman, T. B. Onasch, and Q. Zhang. 2017. Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol. Atmos. Chem. Phys. 17:2477–93. doi:10.5194/acp-17-2477-2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.