957
Views
3
CrossRef citations to date
0
Altmetric
Technical Paper

Simulation and experimental investigation of dust-collecting performances of different dust exhaust hoods

, , , &
Pages 1367-1377 | Received 08 May 2020, Accepted 12 Aug 2020, Published online: 28 Oct 2020

References

  • Betta, V., F. Cascetta, P. Labruna, and A. Palombo. 2004. A numerical approach for air velocity predictions in front of exhaust flanged slot openings. Build. Environ. 39 (1):9–18. doi:10.1016/j.buildenv.2003.07.004.
  • Candra, K. J., S. A. Pulung, and M. A. Sadashiv. 2014. Dust dispersion and management in underground mining faces. Int. J. Mining Sci. Technol. 24 (1):39–44. doi:10.1016/j.ijmst.2013.12.007.
  • Cascetta, F., and F. M. M. Rosano. 2001. Assessment of velocity fields in the vicinity of rectangular exhaust hood openings. Build. Environ. 36 (10):1137–41. doi:10.1016/S0360-1323(00)00087-1.
  • Chen, J. 2018. Research on the axial velocity change rule of desktop slot exhaust hood. Ind. Health 56 (4):278–84. doi:10.2486/indhealth.2017-0211.
  • Chen, X. L., C. A. Wheeler, T. J. Donohue, R. Mclean, and A. W. Robert. 2012. Evaluation of dust emissions from conveyor transfer chutes using experimental and CFD simulation. Int. J. Mineral Process. 110-111:101–08. doi:10.1016/j.minpro.2012.04.008.
  • Deming, W. 2015. Mine dusts, 134–35. Beijing: Science Press.
  • Ferge, T., J. Maguhn, H. Felber, and R. Zimmermann. 2004. Particle collection efficiency and particle re-entrainment of an electrostatic precipitator in a sewage sludge incineration plant. Environ. Sci. Technol. 38(5):1545–53. doi:10.1021/es034709s.
  • Guo, Y., L. Luo, Y. Zheng, T. Zhu, and M. Ye. 2020. Influence of pollutants’ control facilities on PM2.5 profiles emitted from an iron and steel plant. Environ. Technol. 41 (4):521–28. doi:10.1080/09593330.2018.1504123.
  • Li, X., X. Xu, M. Zhang, and Y. Jiao. 2019. Column dust scrubber based on the orifice plate to intensify the gas-liquid mixing. Chem. Eng. Technol. 42 (11):2302–09. doi:10.1002/ceat.201800685.
  • Logachev, K. I., A. M. Ziganshin, and O. A. Averkova. 2018. Simulations of dust dynamics around a cone hood in updraft conditions. J. Occup. Environ. Hyg. 15 (10):715–31. doi:10.1080/15459624.2018.1492137.
  • Logachev, K. I., A. M. Ziganshin, and O. A. Averkova. 2020. A study of separated flows at inlets of flanged slotted hoods. J. Build. Eng. 29 (May):101159. doi:10.1016/j.jobe.2019.101159.
  • Patel, M. K., M. Kundu, H. K. Sahoo, and M. K. Nayak. 2016. Enhanced performance of an air-assisted electrostatic nozzle: Role of electrode material and its dimensional considerations in spray charging. Engi. Agric. Environ. Food 9 (4):332–38. doi:10.1016/j.eaef.2016.05.002.
  • Pinelli, M., and A. Suman. 2014. A numerical method for the efficient design of free opening hoods in industrial and domestic applications. Energy. 74 (September). Elsevier Ltd:484–93. doi:10.1016/j.energy.2014.07.014.
  • Ru, Y., L. Zhao, S. Lara Jane, H. Zhu, and S. K. Ramdon. 2017. Laboratory evaluation of electrostatic spray wet scrubber to control particulate matter emissions from poultry facilities. Environ Technol. 38(1):23–33. doi:10.1080/09593330.2016.1184319.
  • Xiaodong, X. 2013. Dust suppression theory and technology [M]. Beijing: Metallurgical Industry Press.
  • Xiao, D., X. Li, Z. Fang, W. Yan, Y. Jiang, and X. Zhao. 2020. Investigation of the dust control performance of a new transverse-flow air curtain soft-sealing system. Powder Technol. 362:238–45. doi:10.1016/j.powtec.2019.11.091.
  • Xiao, D., X. Li, W. Yan, and Z. Fang. 2019. Experimental investigation and numerical simulation of small-volume transverse-flow air curtain performances. Powder Technol. 352:262–72. doi:10.1016/j.powtec.2019.04.063.
  • Xiaochuan, L., H. Haibin, X. Di, W. DongXue, and J. Shuguang. 2019. Analysis of the spatial distribution of collectors in dust scrubber based on image processing. J. Air Waste Manage. Assoc. 69 (6):764–77. doi:10.1080/10962247.2019.1586012.
  • Xiaochuan, L., W. Qili, L. Qi, and H. Yafei. 2016. Developments in studies of air entrained by falling bulk materials. Powder Technol. 291 (4):159–69. doi:10.1016/j.powtec.2015.12.021.
  • Yuan, L. 2020. Scientific conception of coal mine dust prevention and occupational safety and health. J. China Coal Soc. 45 (1):1–7.
  • Zare, M., and S. H. Hashemabadi. 2020. Particle-fluid heat transfer close to the bed wall: CFD simulation and experimental study of particle shape influence on the formation of hot zones. Int. J. Therm. Sci. 150:106223. doi:10.1016/j.ijthermalsci.2019.106223.
  • Zaripov, S. K., A. K. Gilfanov, and D. V. Maklakov. 2010. Numerical study of thin-walled sampler performance for aerosols in low windspeed environments. Aerosol Sci. Technol. 44 (2):152–60. doi:10.1080/02786820903447214.
  • Zhou, Q., B. Qin, F. Wang, H. Wang, J. Hou, and Z. Wang. 2019. Effects of droplet formation patterns on the atomization characteristics of a dust removal spray in a coal cutter[J]. Powder Technol. 344:570–80. doi:10.1016/j.powtec.2018.12.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.