738
Views
4
CrossRef citations to date
0
Altmetric
Technical Papers

Operational bias correction for PM2.5 using the AIRPACT air quality forecast system in the Pacific Northwest

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 515-527 | Received 05 Aug 2020, Accepted 20 Nov 2020, Published online: 10 Feb 2021

References

  • Antonopoulos, S., J. Montpetit, V. Fortin, and G. Roy. 2014. Improving O3, PM2.5, and NO2 surface fields by optimally interpolating updatable MOS forecast, Chapter 40. In Air pollution modeling and its application XXII, ed. D. G. Steyn, Builtjes P., Timmermans R., 233–237. Dordrecht: NATO Science for Peace and Security Series C, Springer Science.
  • Chen, J., J. Vaughan, J. Avise, S. O’Neill, and B. Lamb. 2008. Enhancement and evaluation of the AIRPACT ozone and PM2.5 forecast system for the Pacific Northwest. J. Geophys. Res. 113:D14305. doi:10.1029/2007JD009554.
  • Crooks, J. L., and H. Ozkaynak. 2014. Simultaneous statistical bias correction of multiple PM2.5 species from a regional photochemical grid model. Atmos. Environ. 95:126–41. doi:10.1016/j.atmosenv.2014.06.024.
  • Deligiorgi, D., and K. Philippopoulos. 2011. Spatial interpolation methodologies in urban air pollution modeling: Application for the greater area of metropolitan Athens, Greece. In Advanced air pollution, ed. F. Nejadkoorki, 341–362. IntechOpen. doi:10.5772/17734.
  • Delle Monache, L., T. Nipen, X. X. Deng, Y. M. Zhou, and R. Stull. 2006. Ozone ensemble forecasts: 2. A Kalman filter predictor bias correction. J. Geophys. Res. Atmos. 111 (D5):D05308. doi:10.1029/2005JD006311.
  • Djalalova, I., L. D. Monache, and J. Wilczak. 2015. PM2.5 analog forecast and Kalman filter post-processing for the community multiscale air quality (CMAQ) model. Atmos. Environ. 119:431–42. doi:10.1016/j.atmosenv.2015.05.057.
  • Guenther, A. B., X. Jiang, C. L. Heald, T. Sakulyanontvittaya, T. Duhl, L. K. Emmons, and X. Wang. 2012. The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 5 (6):1471–92. doi:10.5194/gmd-5-1471-2012.
  • Herron-Thorpe, F. L., G. H. Mount, L. K. Emmons, B. K. Lamb, D. A. Jaffe, N. L. Wigder, S. H. Chung, R. Zhang, M. D. Woelfle, and J. K. Vaughan. 2014. Air quality simulations of wildfires in the Pacific Northwest evaluated with surface and satellite observations during the summers of 2007 and 2008. Atmos. Chem. Phys. 14 (22):12533–51. doi:10.5194/acp-14-12533-2014.
  • Huang, J. J., M. J. Wilczak, I. Djalalova, I. Stajner, P. Shafran, D. Allured, P. Lee, L. Pan, D. Tong, H. C. Huang, et al. 2017. Improving NOAA NAQFC PM2.5 predictions with a bias correction approach. Weather and Forecasting. doi:10.1175/WAF-D-16-0118.1.
  • Kang, D., R. Mathur, and S. T. Rao. 2010a. Real-time bias-adjusted O3 and PM2.5 air quality index forecasts and their performance evaluations over the continental united states. Atmos. Environ. 44 (18):2203–12. doi:10.1016/j.atmosenv.2010.03.017.
  • Kang, D., R. Mathur, and S. T. Rao. 2010b. Assessment of bias-adjusted PM2.5 air quality forecasts over the continental United States during 2007. Geosci. Model Dev. 3 (1):309–20. doi:10.5194/gmd-3-309-2010.
  • Kang, D., R. Mathur, S. T. Rao, and S. Yu. 2008. Bias adjustment techniques for improving ozone air quality forecasts. J. Geophys. Res. 113 (D23):D23308. doi:10.1029/2008JD010151.
  • Larkin, N. K., S. M. O’Neill, R. Solomon, S. Raffuse, T. Strand, D. C. Sullivan, C. Krull, M. Rorig, J. Peterson, and S. A. Ferguson. 2009. The bluesky smoke modeling framework. JOUR. Int. J. Wildland Fire 18 (8):906. doi:10.1071/WF07086.
  • Lyu, B., Y. Zhang, and Y. Hu. 2017. Improving PM2.5 air quality model forecasts in China using a bias-correction framework. Atmosphere 8 (12):147–62. doi:10.3390/atmos8080147.
  • Mass, C.F., M. Albright, D. Ovens, R. Steed, E. Grimit, T. Eckel, B. Lamb, J. Vaughan, K. Westrick, P. Storck, B. Coleman, C. Hill, N. Maykut, M. Gilroy, S. Ferguson, J. Yetter, J. M. Sierchio, C. Bowman, D. Stender, R. Wilson, and W. Brown. 2003. Regional environmental prediction over the Pacific Northwest, Bulletin Amer. Meteorol. Soc. 84, 1353–1366.
  • Mavko, M., and R. Morris. 2013. DEASCO3 project updates to the fire plume rise methodology to model smoke dispersion. Denver, CO: Technical Memorandum, Air Sciences, Inc. https://deasco3.wraptools.org/.
  • Monteiro, A., I. Ribeiro, O. Tchepel, E. Sa, J. Ferreira, A. Carvalho, V. Martins, A. Strunk, S. Galmarini, H. Elbern, et al. 2013. Bias correction techniques to improve air quality ensemble predictions: Focus on O3 and PM over Portugal. Environ. Model Asses. doi:10.1007/s10666-013-9358-2.
  • Munson, J. A., 2019. Decadal evaluation of the AIRPACT regional air. quality forecast system in the Pacific Northwest from 2009-2018. M.S. thesis, Washington State University.
  • Raffuse, S. M., D. A. Pryden, D. C. Sullivan, N. K. Larkin, T. Strand, and R. Solomon. 2009. SMARTFIRE algorithm description. JOUR. US Environmental Protection Agency, Research Triangle Park, NC, by Sonoma Technology, Inc., Petaluma, CA, and the US Forest Service, AirFire Team, Pacific Northwest Research Laboratory, Seattle,WA STI-905517-3719.
  • Silibello, C., A. D’Allura, S. Finardi, A. Bolignano, and R. Sozzi. 2015. Application of bias adjustment techniques to improve air quality forecasts. Atmos Pollut. Research 6 (6):928–38. doi:10.1016/j.apr.2015.04.002.
  • Vaughan, J., B. Lamb, R. Wilson, C. Bowman, C. Figueroa-Kaminsky, S. Otterson, M. Boyer, C. Mass, M. Albright, J. Koenitg, et al. 2004. A numerical daily air-quality forecast system for the Pacific Northwest. Bulletin Amer. Meteorol. Soc. 85:549–61. doi:10.1175/BAMS-85-4-549.
  • Wong, D. W., L. Yuan, and S. A. Perlin. 2004. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Anal. Environ. Epidemiol. 14 (5):404–15. doi:10.1038/sj.jea.7500338.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.