650
Views
0
CrossRef citations to date
0
Altmetric
Review Paper

Leachate decontamination through biological processes coupled to advanced oxidation: A review

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1341-1365 | Received 02 Jan 2021, Accepted 13 Sep 2021, Published online: 26 May 2022

References

  • Afzal, M., M. Arslan, J. A. Müller, G. Shabir, E. Islam, R. Tahseen, M. Anwar-ul-Haq, A. J. Hashmat, S. Iqbal, and Q. M. Khan. 2019. Floating treatment wetlands as a suitable option for large-scale wastewater treatment. Nat. Sustain. 2 (9):863–71. doi:10.1038/s41893-019-0350-y.
  • Aghbashlo, M., M. Tabatabaei, H. Jazini, and H. S. Ghaziaskar. 2018. Exergoeconomic and exergoenvironmental co-optimization of continuous fuel additives (acetins) synthesis from glycerol esterification with acetic acid using Amberlyst 36 catalyst. Energy Convers. Manage. 165:183–94. doi:10.1016/j.enconman.2018.03.054.
  • Ahmed, F. N., and C. Q. Lan. 2012. Treatment of landfill leachate using membrane bioreactors: A review. Desalination 287:41–54. doi:10.1016/j.desal.2011.12.012.
  • Al-Mamun, M. R., S. Kader, M. S. Islam, and M. Z. H. Khan. 2019. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 7 (5):103248. doi:10.1016/j.jece.2019.103248.
  • Ali, T., A. Ahmed, U. Alam, I. Uddin, P. Tripathi, and M. Muneer. 2018. Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212:325–35. doi:10.1016/j.matchemphys.2018.03.052.
  • Aloui, F., F. Fki, S. Loukil, and S. Sayadi. 2009. Application of combined membrane biological reactor and electro-oxidation processes for the treatment of landfill leachates. Water Sci. Technol. 60 (3):605–14. doi:10.2166/wst.2009.377.
  • Annangi, B., S. Bonassi, R. Marcos, and A. Hernández. 2016. Biomonitoring of humans exposed to arsenic, chromium, nickel, vanadium, and complex mixtures of metals by using the micronucleus test in lymphocytes. Mutation Res. Rev. Mutation Res. 770:140–61. doi:10.1016/j.mrrev.2016.03.003.
  • Anwar, M., S. Lou, L. Chen, H. Li, and Z. Hu. 2019. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour. Technol. 292:121972. doi:10.1016/j.biortech.2019.121972.
  • Arshad, R., T. H. Bokhari, T. Javed, I. A. Bhatti, S. Rasheed, M. Iqbal, A. Nazir, S. Naz, M. I. Khan, M. K. K. Khosa,et al. 2020. Degradation product distribution of Reactive Red-147 dye treated by UV/H2O2/TiO2 advanced oxidation process. Journal of Materials Research and Technology. doi:10.1016/j.jmrt.2020.01.062.
  • Athanasekou, C. P., V. Likodimos, and P. Falaras. 2018. Recent developments of TiO2 photocatalysis involving advanced oxidation and reduction reactions in water. J. Environ. Chem. Eng. 6 (6):7386–94. doi:10.1016/j.jece.2018.07.026.
  • Azadi, S., A. Karimi-Jashni, and S. Javadpour. 2018. Modeling and optimization of photocatalytic treatment of landfill leachate using tungsten-doped TiO2 nano-photocatalysts: Application of artificial neural network and genetic algorithm. Process Safety Environ. Protection 117:267–77. doi:10.1016/j.psep.2018.03.038.
  • Azadi, S., A. Karimi-Jashni, S. Javadpour, and H. Amiri. 2020. Photocatalytic treatment of landfill leachate: A comparison between N-, P-, and N-P-type TiO2 nanoparticles. Environ. Technol. Innovation 19:100985. doi:10.1016/j.eti.2020.100985.
  • Baiju, A., R. Gandhimathi, S. T. Ramesh, and P. V. Nidheesh. 2018. Combined heterogeneous electro-fenton and biological process for the treatment of stabilized landfill leachate. J. Environ. Manage. 210:328–37. doi:10.1016/j.jenvman.2018.01.019.
  • Barkul, R. P., V. B. Koli, V. B. Shewale, M. K. Patil, and S. D. Delekar. 2016. Visible active nanocrystalline N-doped anatase TiO2 particles for photocatalytic mineralization studies. Mater. Chem. Phys. 173:42–51. doi:10.1016/j.matchemphys.2016.01.035.
  • Barkul, R. P., M. K. Patil, S. M. Patil, V. B. Shevale, and S. D. Delekar. 2017. Sunlight-assisted photocatalytic degradation of textile effluent and Rhodamine B by using iodine doped TiO2 nanoparticles. J. Photochem. Photobiol. A 349:138–47. doi:10.1016/j.jphotochem.2017.09.011.
  • Bhatt, A. H., R. V. Karanjekar, S. Altouqi, M. L. Sattler, M. D. S. Hossain, and V. P. Chen. 2017. Estimating landfill leachate BOD and COD based on rainfall, ambient temperature, and waste composition: Exploration of a Mars statistical approach. Environ. Technol. Innovation 8:1–16. doi:10.1016/j.eti.2017.03.003.
  • Bilińska, L., M. Gmurek, and S. Ledakowicz. 2016. Comparison between industrial and simulated textile wastewater treatment by AOPs – Biodegradability, toxicity and cost assessment. Chem. Eng. J. 306:550–59. doi:10.1016/j.cej.2016.07.100.
  • Boczkaj, G., and A. Fernandes. 2017. Wastewater treatment by means of advanced oxidation processes at basic pH conditions: A review. Chem. Eng. J. 320:608–33. doi:10.1016/j.cej.2017.03.084.
  • Bolton, J. R., K. G. Bircher, W. Tumas, and C. A. Tolman. 2001. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC technical report). Pure Appl. Chem. 73 (4):627–37. doi:10.1351/pac200173040627.
  • Buthiyappan, A., A. R. Abdul Aziz, and W. M. A. Wan Daud. 2015. Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments. Rev. Chem. Eng. 31 (3). doi: 10.1515/revce-2014-0039.
  • Cai, Q. Q., M. Y. Wu, R. Li, S. H. Deng, B. C. Y. Lee, S. L. Ong, and J. Y. Hu. 2020. Potential of combined advanced oxidation – Biological process for cost-effective organic matters removal in reverse osmosis concentrate produced from industrial wastewater reclamation: Screening of AOP pre-treatment technologies. Chem. Eng. J. 389:123419. doi:10.1016/j.cej.2019.123419.
  • Cardoso, J. C., G. G. Bessegato, and M. V. Boldrin Zanoni. 2016. Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization. Water Res. 98:39–46. doi:10.1016/j.watres.2016.04.004.
  • Carney Almroth, B., J. Cartine, C. Jönander, M. Karlsson, J. Langlois, M. Lindström, J. Lundin, N. Melander, A. Pesqueda, I. Rahmqvist, et al. 2021. Assessing the effects of textile leachates in fish using multiple testing methods: From gene expression to behavior. Ecotoxicol. Environ. Saf. 207:111523. doi:10.1016/j.ecoenv.2020.111523.
  • Caroline Baettker, E., C. Kozak, H. G. Knapik, and M. M. Aisse. 2020. Applicability of conventional and non-conventional parameters for municipal landfill leachate characterization. Chemosphere 251:126414. doi:10.1016/j.chemosphere.2020.126414.
  • Casado, J. 2019. Towards industrial implementation of electro-fenton and derived technologies for wastewater treatment: A review. J. Environ. Chem. Eng. 7 (1):102823. doi:10.1016/j.jece.2018.102823.
  • Castillo-Suárez, L. A., V. Lugo-Lugo, I. Linares-Hernández, V. Martínez-Miranda, M. Esparza-Soto, and M. D. L. Á. Mier-Quiroga. 2019. Biodegradability index enhancement of landfill leachates using a Solar Galvanic-Fenton and Galvanic-Fenton system coupled to an anaerobic–aerobic bioreactor. Solar Energy 188:989–1001. doi:10.1016/j.solener.2019.07.010.
  • Chang, H., Q. Fu, N. Zhong, X. Yang, X. Quan, S. Li, J. Fu, and C. Xiao. 2019. Microalgal lipids production and nutrients recovery from landfill leachate using membrane photobioreactor. Bioresour. Technol. 277:18–26. doi:10.1016/j.biortech.2019.01.027.
  • Chaouki, Z., M. Hadri, M. Nawdali, M. Benzina, and H. Zaitan. 2021. Treatment of a landfill leachate from Casablanca city by a coagulation-flocculation and adsorption process using a palm bark powder (PBP). Sci. Afr. 12:e00721. doi:10.1016/j.sciaf.2021.e00721.
  • Chávez, A. M., O. Gimeno, A. Rey, G. Pliego, A. L. Oropesa, P. M. Álvarez, and F. J. Beltrán. 2019. Treatment of highly polluted industrial wastewater by means of sequential aerobic biological oxidation-ozone based AOPs. Chem. Eng. J. 361:89–98. doi:10.1016/j.cej.2018.12.064.
  • Chemlal, R., L. Azzouz, R. Kernani, N. Abdi, H. Lounici, H. Grib, N. Mameri, and N. Drouiche. 2014. Combination of advanced oxidation and biological processes for the landfill leachate treatment. Ecol. Eng. 73:281–89. doi:10.1016/j.ecoleng.2014.09.043.
  • Chen, W., Z. Gu, P. Wen, and Q. Li. 2019a. Degradation of refractory organic contaminants in membrane concentrates from landfill leachate by a combined coagulation-ozonation process. Chemosphere 217:411–22. doi:10.1016/j.chemosphere.2018.11.002.
  • Chen, W., A. Zhang, G. Jiang, and Q. Li. 2019b. Transformation and degradation mechanism of landfill leachates in a combined process of SAARB and ozonation. Waste Manage. 85:283–94. doi:10.1016/j.wasman.2018.12.038.
  • Chen, W., Z. Gu, G. Ran, and Q. Li. 2021. Application of membrane separation technology in the treatment of leachate in China: A review. Waste Manage. 121:127–40. doi:10.1016/j.wasman.2020.12.002.
  • Chou, Y.-C., S.-L. Lo, J. Kuo, and C.-J. Yeh. 2015. Microwave-enhanced persulfate oxidation to treat mature landfill leachate. J. Hazard. Mater. 284:83–91. doi:10.1016/j.jhazmat.2014.10.043.
  • Colombo, A., A. N. Módenes, D. E. Góes Trigueros, S. I. Giordani da Costa, F. H. Borba, and F. R. Espinoza-Quiñones. 2019. Treatment of sanitary landfill leachate by the combination of photo-fenton and biological processes. J. Clean. Prod. 214:145–53. doi:10.1016/j.jclepro.2018.12.310.
  • Corsino, S. F., M. Capodici, D. Di Trapani, M. Torregrossa, and G. Viviani. 2020. Assessment of landfill leachate biodegradability and treatability by means of allochthonous and autochthonous biomasses. N. Biotechnol. 55:91–97. doi:10.1016/j.nbt.2019.10.007.
  • Cortez, S., P. Teixeira, R. Oliveira, and M. Mota. 2011. Evaluation of fenton and ozone-based advanced oxidation processes as mature landfill leachate pre-treatments. J. Environ. Manage. 92 (3):749–55. doi:10.1016/j.jenvman.2010.10.035.
  • Costa, M. P. D., J. V. S. Pancotto, M. A. K. De Alcântara, A. S. Cavalcanti, O. L. C. Guimarães, and H. J. Izário Filho. 2013. Combination of sunlight irradiated oxidative processes for landfill leachate: Heterogeneous catalysis (TiO2) versus homogeneous catalysis (H2O2). Ambiente Agua. 8 (1). doi: 10.4136/ambi-agua.1063.
  • Costa, A. M., R. G. D. S. M. Alfaia, and J. C. Campos. 2019. Landfill leachate treatment in Brazil – An overview. In Journal of environmental management, Vol. 232, 110–16. Academic Press. doi:10.1016/j.jenvman.2018.11.006.
  • da Costa, F. M., S. D. A. Daflon, D. M. Bila, F. V. da Fonseca, and J. C. Campos. 2018. Evaluation of the biodegradability and toxicity of landfill leachates after pretreatment using advanced oxidative processes. Waste Manage. 76:606–13. doi:10.1016/j.wasman.2018.02.030.
  • Damiano, L., J. R. Jambeck, and D. B. Ringelberg. 2014. Municipal solid waste landfill leachate treatment and electricity production using microbial fuel cells. Appl. Biochem. Biotechnol. 173 (2):472–85. doi:10.1007/s12010-014-0854-x.
  • de Albuquerque, E. M., E. Pozzi, I. K. Sakamoto, and P. Jurandyr. 2018. Treatability of landfill leachate combined with sanitary sewage in an activated sludge system. J. Water Process Eng. 23:119–28. doi:10.1016/j.jwpe.2018.03.011.
  • de Carluccio, M., A. Fiorentino, and L. Rizzo. 2020. Multi-barrier treatment of mature landfill leachate: Effect of fenton oxidation and air stripping on activated sludge process and cost analysis. J. Environ. Chem. Eng. 8 (5):104444. doi:10.1016/j.jece.2020.104444.
  • de Matos Rodrigues, M. H., P. A. Rodrigues de Sousa, K. C. M. Borges, L. de Melo Coelho, R. de Fátima Gonçalves, M. D. Teodoro, F. Vilella da Motta, R. Maribondo do Nascimento, and M. G. Júnior. 2019. Enhanced degradation of the antibiotic sulfamethoxazole by heterogeneous photocatalysis using Ce0,8Gd0,2O2-δ/TiO2 particles. J. Alloys Compd. 808:151711. doi:10.1016/j.jallcom.2019.151711.
  • Dereli, R. K., E. Clifford, and E. Casey. 2020. Co-treatment of leachate in municipal wastewater treatment plants: Critical issues and emerging technologies. Crit. Rev. Environ. Sci. Technol. 1–50. doi:10.1080/10643389.2020.1745014.
  • Deveci, E. Ü., N. Dizge, H. C. Yatmaz, and Y. Aytepe. 2016. Integrated process of fungal membrane bioreactor and photocatalytic membrane reactor for the treatment of industrial textile wastewater. Biochem. Eng. J. 105:420–27. doi:10.1016/j.bej.2015.10.016.
  • Dewil, R., D. Mantzavinos, I. Poulios, and M. A. Rodrigo. 2017. New perspectives for advanced oxidation processes. J. Environ. Manage. 195:93–99. doi:10.1016/j.jenvman.2017.04.010.
  • Díez, A. M., M. A. Sanromán, and M. Pazos. 2019. New approaches on the agrochemicals degradation by UV oxidation processes. Chem. Eng. J. 376:120026. doi:10.1016/j.cej.2018.09.187.
  • Doruk, N., H. C. Yatmaz, and N. Dizge. 2016. Degradation efficiency of textile and wood processing industry wastewater by photocatalytic process using in situ ultrafiltration membrane. Clean 44 (3):224–31. doi:10.1002/clen.201400203.
  • Dozzi, M. V., L. Artiglia, G. Granozzi, B. Ohtani, and E. Selli. 2014. Photocatalytic activity vs structural features of titanium dioxide materials singly doped or codoped with fluorine and boron. J. Phys. Chem. C 118 (44):25579–89. doi:10.1021/jp5084696.
  • Dozzi, M. V., and E. Selli. 2016. Effects of the calcination temperature on the photoactivity of B- and F-doped or codoped TiO2 in formic acid degradation. Mater. Sci. Semiconductor Process. 42:36–39. doi:10.1016/j.mssp.2015.08.007.
  • Dullius, T., F. R. Espinoza-Quiñones, P. L. Obregón, A. N. Módenes, I. Ribeiro, and A. R. de Pauli. 2020. An assessment of landfill leachate influences on water quality in the Boi Piguá river basin (Paraná, Brazil) using the TXRF technique. Environ. Earth Sci. 79 (5):95. doi:10.1007/s12665-020-8834-7.
  • Eggen, T., M. Moeder, and A. Arukwe. 2010. Municipal landfill leachates: A significant source for new and emerging pollutants. Sci.Total Environ. 408 (21):5147–57. doi:10.1016/j.scitotenv.2010.07.049.
  • El Mrabet, I., M. Benzina, H. Valdés, and H. Zaitan. 2020. Treatment of landfill leachates from Fez city (Morocco) using a sequence of aerobic and fenton processes. Sci. Afr. 8:e00434. doi:10.1016/j.sciaf.2020.e00434.
  • Elleuch, L., M. Messaoud, K. Djebali, M. Attafi, Y. Cherni, M. Kasmi, A. Elaoud, I. Trabelsi, and A. Chatti. 2020. A new insight into highly contaminated landfill leachate treatment using Kefir grains pre-treatment combined with Ag-doped TiO2 photocatalytic process. J. Hazard. Mater. 382:121119. doi:10.1016/j.jhazmat.2019.121119.
  • Elmaadawy, K., J. Hu, S. Guo, H. Hou, J. Xu, D. Wang, T. Liang, J. Yang, S. Liang, K. Xiao, et al. 2020. Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system. Bioresour. Technol. 310:123420. doi:10.1016/j.biortech.2020.123420.
  • Fagan, R., D. E. McCormack, D. D. Dionysiou, and S. C. Pillai. 2016. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Mater. Sci. Semiconductor Process. 42:2–14. doi:10.1016/j.mssp.2015.07.052.
  • Fang, Z., Y. Gao, X. Wu, X. Xu, A. K. Sarmah, N. Bolan, B. Gao, S. M. Shaheen, J. Rinklebe, Y. S. Ok, et al. 2020. A critical review on remediation of bisphenol S (BPS) contaminated water: Efficacy and mechanisms. Crit. Rev. Environ. Sci. Technol. 50 (5):476–522. doi:10.1080/10643389.2019.1629802.
  • Feng, H., W. Mao, Y. Li, X. Wang, and S. Chen. 2021. Characterization of dissolved organic matter during the O3-based advanced oxidation of mature landfill leachate with and without biological pre-treatment and operating cost analysis. Chemosphere 271:129810. doi:10.1016/j.chemosphere.2021.129810.
  • Ferraz, F. M., and Q. Yuan. 2020. Performance of oat hulls activated carbon for COD and color removal from landfill leachate. J. Water Process Eng. 33:101040. doi:10.1016/j.jwpe.2019.101040.
  • Fitzsimons, L., M. Horrigan, G. McNamara, E. Doherty, T. Phelan, B. Corcoran, Y. Delauré, and E. Clifford. 2016. Assessing the thermodynamic performance of Irish municipal wastewater treatment plants using exergy analysis: A potential benchmarking approach. J. Clean. Prod. 131:387–98. doi:10.1016/j.jclepro.2016.05.016.
  • Franco, D. S. P., F. A. Duarte, N. P. G. Salau, and G. L. Dotto. 2020. Analysis of indium (III) adsorption from leachates of LCD screens using artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANIFS). J. Hazard. Mater. 384:121137. doi:10.1016/j.jhazmat.2019.121137.
  • Gautam, P., S. Kumar, and S. Lokhandwala. 2019. Advanced oxidation processes for treatment of leachate from hazardous waste landfill: A critical review. J. Clean. Prod. 237:117639. doi:10.1016/j.jclepro.2019.117639.
  • Ghahrchi, M., and A. Rezaee. 2020. Electro-catalytic ozonation for improving the biodegradability of mature landfill leachate. J. Environ. Manage. 254:109811. doi:10.1016/j.jenvman.2019.109811.
  • Giannakis, S., K.-Y. A. Lin, and F. Ghanbari. 2021. A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 406:127083. doi:10.1016/j.cej.2020.127083.
  • Gomes, A. I., S. G. S. Santos, T. F. C. V. Silva, R. A. R. Boaventura, and V. J. P. Vilar. 2019b. Treatment train for mature landfill leachates: Optimization studies. Sci. Total Environ. 673:470–79. doi:10.1016/j.scitotenv.2019.04.027.
  • Gu, N., J. Liu, J. Ye, N. Chang, and -Y.-Y. Li. 2019. Bioenergy, ammonia and humic substances recovery from municipal solid waste leachate: A review and process integration. Bioresour. Technol. 293:122159. doi:10.1016/j.biortech.2019.122159.
  • Gupta, A., and R. Paulraj. 2017. Leachate composition and toxicity assessment: An integrated approach correlating physicochemical parameters and toxicity of leachates from MSW landfill in Delhi. Environ. Technol. 38 (13–14):1599–605. doi:10.1080/09593330.2016.1238515.
  • Hamilton, J. W. J., J. A. Byrne, P. S. M. Dunlop, D. D. Dionysiou, M. Pelaez, K. O’Shea, D. Synnott, and S. C. Pillai. 2014. Evaluating the mechanism of visible light activity for N,F-TiO 2 using photoelectrochemistry. J. Phys. Chem. C 118 (23):12206–15. doi:10.1021/jp4120964.
  • Han, M., X. Duan, G. Cao, S. Zhu, and S.-H. Ho. 2020. Graphitic nitride-catalyzed advanced oxidation processes (AOPs) for landfill leachate treatment: A mini review. Process Safety Environ. Protection 139:230–40. doi:10.1016/j.psep.2020.04.046.
  • Haranaka-Funai, D., F. Didier, J. Giménez, P. Marco, S. Esplugas, and A. Machulek-Junior. 2017. Photocatalytic treatment of valproic acid sodium salt with TiO 2 in different experimental devices: An economic and energetic comparison. Chem. Eng. J. 327:656–65. doi:10.1016/j.cej.2017.06.148.
  • Hassan, M., Y. Zhao, and B. Xie. 2016. Employing TiO2 photocatalysis to deal with landfill leachate: Current status and development. In Chemical engineering journal, Vol. 285, 264–75. Elsevier. doi:10.1016/j.cej.2015.09.093.
  • Hassan, M., X. Wang, F. Wang, D. Wu, A. Hussain, and B. Xie. 2017. Coupling ARB-based biological and photochemical (UV/TiO 2 and UV/S 2 O 8 2−) techniques to deal with sanitary landfill leachate. Waste Manage. 63:292–98. doi:10.1016/j.wasman.2016.09.003.
  • Hassan, M., H. Wei, H. Qiu, Y. Su, S. W. H. Jaafry, L. Zhan, and B. Xie. 2018. Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes. Bioresour. Technol. 247:434–42. doi:10.1016/j.biortech.2017.09.124.
  • Hu, L., G. Zeng, G. Chen, H. Dong, Y. Liu, J. Wan, A. Chen, Z. Guo, M. Yan, H. Wu, et al. 2016. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO 2 nanoparticles. J. Hazard. Mater. 301:106–18. doi:10.1016/j.jhazmat.2015.08.060.
  • Ishchenko, V. 2019. Heavy metals in municipal waste: The content and leaching ability by waste fraction. J. Environ. Sci. Health Part A 54 (14):1448–56. doi:10.1080/10934529.2019.1655369.
  • Iskander, S. M., B. Brazil, J. T. Novak, and Z. He. 2016. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives. Bioresour. Technol. 201:347–54. doi:10.1016/j.biortech.2015.11.051.
  • Ismail, S., M. Nasr, E. Abdelrazek, H. M. Awad, S. Zhaof, F. Meng, and A. Tawfik. 2020. Techno-economic feasibility of energy-saving self-aerated sponge tower combined with up-flow anaerobic sludge blanket reactor for treatment of hazardous landfill leachate. J. Water Process Eng. 37:101415. doi:10.1016/j.jwpe.2020.101415.
  • Izah, S. C., N. Chakrabarty, and A. L. Srivastav. 2016. A review on heavy metal concentration in potable water sources in Nigeria: Human health effects and mitigating measures. Exposure Health 8 (2):285–304. doi:10.1007/s12403-016-0195-9.
  • Izumi, Y. 2015. Recent advances (2012–2015) in the photocatalytic conversion of carbon dioxide to fuels using solar energy: Feasibilty for a new energy, 1–46. doi: 10.1021/bk-2015-1194.ch001.
  • Jaafarzadeh, N., A. Takdastan, S. Jorfi, F. Ghanbari, M. Ahmadi, and G. Barzegar. 2018. The performance study on ultrasonic/Fe 3 O 4 /H 2 O 2 for degradation of azo dye and real textile wastewater treatment. J. Mol. Liq. 256:462–70. doi:10.1016/j.molliq.2018.02.047.
  • Janitabar-Darzi, S. 2014. Structural and photocatalytic activity of mesoporous N-Doped TiO 2 with band-to-band visible light absorption ability. Particulate Sci. Technol. 32 (5):506–11. doi:10.1080/02726351.2014.920443.
  • Kaabeche, O. N. E. H., R. Zouaghi, S. Boukhedoua, S. Bendjabeur, and T. Sehili. 2019. A Comparative Study on Photocatalytic Degradation of Pyridinium – Based Ionic Liquid by TiO2 and ZnO in Aqueous Solution. International Journal of Chemical Reactor Engineering 17 (9). doi:10.1515/ijcre-2018-0253.
  • Kamaruddin, M. A., M. S. Yusoff, H. A. Aziz, and Y.-T. Hung. 2015. Sustainable treatment of landfill leachate. Appl. Water Sci. 5 (2):113–26. doi:10.1007/s13201-014-0177-7.
  • Kamyab, B., H. Zilouei, and B. Rahmanian. 2019. Investigation of the effect of hydraulic retention time on anaerobic digestion of potato leachate in two-stage mixed-UASB system. Biomass Bioenergy 130:105383. doi:10.1016/j.biombioe.2019.105383.
  • Kanan, S., M. A. Moyet, R. B. Arthur, and H. H. Patterson. 2020. Recent advances on TiO 2 -based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal. Rev. 62 (1):1–65. doi:10.1080/01614940.2019.1613323.
  • Kattel, E., A. Kivi, K. Klein, T. Tenno, N. Dulova, and M. Trapido. 2016. Hazardous waste landfill leachate treatment by combined chemical and biological techniques. Desalination Water Treatment 57 (28):13236–45. doi:10.1080/19443994.2015.1057539.
  • Khalil, C., C. Al Hageh, S. Korfali, and R. S. Khnayzer. 2018. Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. Chemosphere 208:1–13. doi:10.1016/j.chemosphere.2018.05.151.
  • Klauck, C. R., A. Giacobbo, C. G. Altenhofen, L. B. Silva, A. Meneguzzi, A. M. Bernardes, and M. A. S. Rodrigues. 2017. Toxicity elimination of landfill leachate by hybrid processing of advanced oxidation process and adsorption. Environ. Technol. Innovation 8:246–55. doi:10.1016/j.eti.2017.07.006.
  • Klauson, D., A. Kivi, E. Kattel, K. Klein, M. Viisimaa, J. Bolobajev, S. Velling, A. Goi, T. Tenno, and M. Trapido. 2015. Combined processes for wastewater purification: Treatment of a typical landfill leachate with a combination of chemical and biological oxidation processes. J. Chem. Technol. Biotechnol. 90 (8):1527–36. doi:10.1002/jctb.4484.
  • Koh, I.-O., X. Chen-Hamacher, K. Hicke, and W. Thiemann. 2004. Leachate treatment by the combination of photochemical oxidation with biological process. J. Photochem. Photobiol. A 162 (2–3):261–71. doi:10.1016/j.nainr.2003.08.011.
  • Le, T. S., N. M. Dang, and D. T. Tran. 2021. Performance of coupling electrocoagulation and biofiltration processes for the treatment of leachate from the largest landfill in Hanoi, Vietnam: Impact of operating conditions. Sep. Purif. Technol. 255:117677. doi:10.1016/j.seppur.2020.117677.
  • Li, J., C. He, T. Tian, Z. Liu, Z. Gu, G. Zhang, and W. Wang. 2020. UASB-modified Bardenpho process for enhancing bio-treatment efficiency of leachate from a municipal solid waste incineration plant. Waste Manage. 102:97–105. doi:10.1016/j.wasman.2019.10.028.
  • Liang, J., J. Wang, K. Song, X. Wang, K. Yu, and C. Liang. 2020. Enhanced photocatalytic activities of Nd-doped TiO2 under visible light using a facile sol-gel method. J. Rare Earths 38 (2):148–56. doi:10.1016/j.jre.2019.07.008.
  • Likodimos, V. 2018. Photonic crystal-assisted visible light activated TiO2 photocatalysis. Appl. Catal. B 230:269–303. doi:10.1016/j.apcatb.2018.02.039.
  • Liu, Z., R. Liu, and F. Nie. 2017. MFPAC coagulation and aged refuse adsorption pretreatment of landfill leachate. Chinese J. Environ. Eng. 11 (1):393–400. doi:10.12030/j.cjee.201509024.
  • Liu, X., J. T. Novak, and Z. He. 2020. Synergistically coupling membrane electrochemical reactor with fenton process to enhance landfill leachate treatment. Chemosphere 247:125954. doi:10.1016/j.chemosphere.2020.125954.
  • Luo, J., G. Qian, J. Liu, and Z. P. Xu. 2015. Anaerobic methanogenesis of fresh leachate from municipal solid waste: A brief review on current progress. Renew. Sustain. Energy Rev. 49:21–28. doi:10.1016/j.rser.2015.04.053.
  • Luo, H., Y. Zeng, Y. Cheng, D. He, and X. Pan. 2020. Recent advances in municipal landfill leachate: A review focusing on its characteristics, treatment, and toxicity assessment. In Science of the total environment, Vol. 703, 135468. Elsevier B.V. doi:10.1016/j.scitotenv.2019.135468.
  • Maiti, S. K., S. De, T. Hazra, A. Debsarkar, and A. Dutta. 2016. Characterization of leachate and its impact on surface and groundwater quality of a closed dumpsite – A case study at Dhapa, Kolkata, India. Procedia Environ. Sci. 35:391–99. doi:10.1016/j.proenv.2016.07.019.
  • Malato, S., M. I. Maldonado, P. Fernández-Ibáñez, I. Oller, I. Polo, and R. Sánchez-Moreno. 2016. Decontamination and disinfection of water by solar photocatalysis: The pilot plants of the plataforma Solar de Almeria. Mater. Sci. Semiconductor Process. 42:15–23. doi:10.1016/j.mssp.2015.07.017.
  • Marcelino, R. B. P., M. T. A. Queiroz, C. C. Amorim, M. M. D. Leão, and F. F. Brites-Nóbrega. 2015. Solar energy for wastewater treatment: Review of international technologies and their applicability in Brazil. Environ.l Sci. Pollution Res. 22 (2):762–73. doi:10.1007/s11356-014-3033-2.
  • Matassa, S., D. J. Batstone, T. Hülsen, J. Schnoor, and W. Verstraete. 2015. Can direct conversion of used nitrogen to new feed and protein help feed the world? Environ. Sci. Technol. 49 (9):5247–54. doi:10.1021/es505432w.
  • Mavakala, B. K., S. Le Faucheur, C. K. Mulaji, A. Laffite, N. Devarajan, E. M. Biey, G. Giuliani, J. P. Otamonga, P. Kabatusuila, P. T. Mpiana, et al. 2016. Leachates draining from controlled municipal solid waste landfill: Detailed geochemical characterization and toxicity tests. Waste Manage. 55:238–48. doi:10.1016/j.wasman.2016.04.028.
  • Mira Anuar, N., and C.-M. Chan. 2020. Adsorption of Escherichia coli from landfill leachate using dredged marine soils as geosorbent: The influence of temperature. Mater. Today 31:278–81. doi:10.1016/j.matpr.2020.06.007.
  • Mishra, S., D. Tiwary, A. Ohri, and A. K. Agnihotri. 2019. Impact of municipal solid waste landfill leachate on groundwater quality in Varanasi, India. Groundwate Sustain. Dev. 9:100230. doi:10.1016/j.gsd.2019.100230.
  • Mohajeri, S., A. A. Hamidi, M. H. Isa, and M. A. Zahed. 2019. Landfill leachate treatment through electro-fenton oxidation. Pollution 5 (1):199–209. doi:10.22059/poll.2018.249210.364.
  • Mohamed, M. A., W. N. W. Salleh, J. Jaafar, A. F. Ismail, and N. A. M. Nor. 2015. Photodegradation of phenol by N-Doped TiO2 anatase/rutile nanorods assembled microsphere under UV and visible light irradiation. Mater. Chem. Phys. 162:113–23. doi:10.1016/j.matchemphys.2015.05.033.
  • Mohammad-pajooh, E., A. E. Turcios, G. Cuff, D. Weichgrebe, K.-H. Rosenwinkel, M. D. Vedenyapina, and L. R. Sharifullina. 2018. Removal of inert COD and trace metals from stabilized landfill leachate by granular activated carbon (GAC) adsorption. J. Environ. Manage. 228:189–96. doi:10.1016/j.jenvman.2018.09.020.
  • Mohan, S., H. Mamane, D. Avisar, I. Gozlan, A. Kaplan, and G. Dayalan. 2019. Treatment of diethyl phthalate leached from plastic products in municipal solid waste using an ozone-based advanced oxidation process. Materials 12 (24):4119. doi:10.3390/ma12244119.
  • Mohan Reddy, K., and J. Devaraju. 2019. Kinetics of photo fenton process and Ag-TiO2 photocatalyst under UV-light. Mater. Today 17:235–38. doi:10.1016/j.matpr.2019.06.424.
  • Moody, C. M., and T. G. Townsend. 2017. A comparison of landfill leachates based on waste composition. Waste Manage. 63:267–74. doi:10.1016/j.wasman.2016.09.020.
  • Mukherjee, S., S. Mukhopadhyay, M. A. Hashim, and B. Sen Gupta. 2015. Contemporary environmental issues of landfill leachate: Assessment and remedies. Crit. Rev. Environ. Sci. Technol. 45 (5):472–590. doi:10.1080/10643389.2013.876524.
  • Müller, G. T., A. Giacobbo, E. A. dos Santos Chiaramonte, M. A. S. Rodrigues, A. Meneguzzi, and A. M. Bernardes. 2015. The effect of sanitary landfill leachate aging on the biological treatment and assessment of photoelectrooxidation as a pre-treatment process. Waste Management 36:177–83. doi:10.1016/j.wasman.2014.10.024.
  • Nazia, S., N. Sahu, V. Jegatheesan, S. K. Bhargava, and S. Sridhar. 2021. Integration of ultrafiltration membrane process with chemical coagulation for proficient treatment of old industrial landfill leachate. Chem. Eng. J. 412:128598. doi:10.1016/j.cej.2021.128598.
  • Nika, M. C., K. Ntaiou, K. Elytis, V. S. Thomaidi, G. Gatidou, O. I. Kalantzi, N. S. Thomaidis, and A. S. Stasinakis. 2020. Wide-scope target analysis of emerging contaminants in landfill leachates and risk assessment using risk quotient methodology. J. Hazard. Mater. 394:122493. doi:10.1016/j.jhazmat.2020.122493.
  • Oulego, P., S. Collado, A. Laca, and M. Díaz. 2016. Impact of leachate composition on the advanced oxidation treatment. Water Res. 88:389–402. doi:10.1016/j.watres.2015.09.048.
  • Pan, Z., C. Song, L. Li, H. Wang, Y. Pan, C. Wang, J. Li, T. Wang, and X. Feng. 2019. Membrane technology coupled with electrochemical advanced oxidation processes for organic wastewater treatment: Recent advances and future prospects. Chem. Eng. J. 376:120909. doi:10.1016/j.cej.2019.01.188.
  • Parangi, T., and M. K. Mishra. 2019. Titania nanoparticles as modified photocatalysts: A review on design and development. Comments Inorganic Chem. 39 (2):90–126. doi:10.1080/02603594.2019.1592751.
  • Parde, D., A. Patwa, A. Shukla, R. Vijay, D. J. Killedar, and R. Kumar. 2021. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innovation 21:101261. doi:10.1016/j.eti.2020.101261.
  • Park, Y.-K., -H.-H. Ha, Y. H. Yu, B.-J. Kim, H.-J. Bang, H. Lee, and S.-C. Jung. 2020. The photocatalytic destruction of cimetidine using microwave-assisted TiO2 photocatalysts hybrid system. J. Hazard. Mater. 391:122568. doi:10.1016/j.jhazmat.2020.122568.
  • Paździor, K., L. Bilińska, and S. Ledakowicz. 2019. A review of the existing and emerging technologies in the combination of AOPs and biological processes in industrial textile wastewater treatment. Chem. Eng. J. 376:120597. doi:10.1016/j.cej.2018.12.057.
  • Pieus Thanikkal, M., and S. Pooppana Antony. 2021. Integrated electro-fenton and membrane bioreactor system for matured landfill leachate treatment. J. Hazardous Toxic Radioactive Waste 25 (1):04020058. doi:10.1061/(ASCE)HZ.2153-5515.0000556.
  • Podder, A., D. Reinhart, and R. Goel. 2020. Integrated leachate management approach incorporating nutrient recovery and removal. Waste Manage. 102:420–31. doi:10.1016/j.wasman.2019.10.048.
  • Przydatek, G., and W. Kanownik. 2019. Impact of small municipal solid waste landfill on groundwater quality. Environ. Monit. Assess. 191 (3):1–14. doi:10.1007/s10661-019-7279-5.
  • Ren, X., X. Xu, Y. Xiao, W. Chen, and K. Song. 2019. Effective removal by coagulation of contaminants in concentrated leachate from municipal solid waste incineration power plants. Sci.Total Environ. 685:392–400. doi:10.1016/j.scitotenv.2019.05.392.
  • Reshadi, M. A. M., A. Bazargan, and G. McKay. 2020. A review of the application of adsorbents for landfill leachate treatment: Focus on magnetic adsorption. Sci.Total Environ. 731:138863. doi:10.1016/j.scitotenv.2020.138863.
  • Rivero, M. J., P. Ribao, B. Gomez-Ruiz, A. Urtiaga, and I. Ortiz. 2020. Comparative performance of TiO2-rGO photocatalyst in the degradation of dichloroacetic and perfluorooctanoic acids. Sep. Purif. Technol. 240:116637. doi:10.1016/j.seppur.2020.116637.
  • Rodrigues, C. S. D., L. M. Madeira, and R. A. R. Boaventura. 2014. Synthetic textile dyeing wastewater treatment by integration of advanced oxidation and biological processes – Performance analysis with costs reduction. J. Environ. Chem. Eng. 2 (2):1027–39. doi:10.1016/j.jece.2014.03.019.
  • Rojviroon, O., T. Rojviroon, and S. Sirivithayapakorn. 2015. Removal of color and chemical oxygen demand from landfill leachate by photocatalytic process with AC/TiO2. Energy Procedia 79:536–41. doi:10.1016/j.egypro.2015.11.530.
  • Różycki, S., and M. Banaś. 2018. Exergy analysis of cavitation pretreatment of sludge. E3S Web Conf. 49:00089. doi:10.1051/e3sconf/20184900089.
  • Rueda-Marquez, J. J., I. Levchuk, P. Fernández Ibañez, and M. Sillanpää. 2020. A critical review on application of photocatalysis for toxicity reduction of real wastewaters. J. Clean. Prod. 258:120694. doi:10.1016/j.jclepro.2020.120694.
  • Ruiz-Delgado, A., P. Plaza-Bolaños, I. Oller, S. Malato, and A. Agüera. 2020. Advanced evaluation of landfill leachate treatments by low and high-resolution mass spectrometry focusing on microcontaminant removal. J. Hazard. Mater. 384:121372. doi:10.1016/j.jhazmat.2019.121372.
  • Sackey, L. N. A., V. Kočí, and C. A. M. van Gestel. 2020. Ecotoxicological effects on Lemna minor and Daphnia magna of leachates from differently aged landfills of Ghana. Sci.Total Environ. 698:134295. doi:10.1016/j.scitotenv.2019.134295.
  • Saeed, T., M. J. Miah, N. Majed, M. K. Alam, and T. Khan. 2021. Effect of effluent recirculation on nutrients and organics removal performance of hybrid constructed wetlands: Landfill leachate treatment. J. Clean. Prod. 282:125427. doi:10.1016/j.jclepro.2020.125427.
  • Sahoo, C., A. K. Gupta, and I. M. S. Pillai. 2012. Heterogeneous photocatalysis of real textile wastewater: Evaluation of reaction kinetics and characterization. J. Environ. Sci. Health Part A 47 (13):2109–19. doi:10.1080/10934529.2012.695996.
  • Saleem, M., A. Spagni, L. Alibardi, A. Bertucco, and M. C. Lavagnolo. 2018. Assessment of dynamic membrane filtration for biological treatment of old landfill leachate. J. Environ. Manage. 213:27–35. doi:10.1016/j.jenvman.2018.02.057.
  • Sanzone, G., M. Zimbone, G. Cacciato, F. Ruffino, R. Carles, V. Privitera, and M. G. Grimaldi. 2018. Ag/TiO2 nanocomposite for visible light-driven photocatalysis. Superlattices Microstruct. 123:394–402. doi:10.1016/j.spmi.2018.09.028.
  • Seibert, D., F. Henrique Borba, F. Bueno, J. J. Inticher, A. N. Módenes, F. R. Espinoza-Quiñones, and R. Bergamasco. 2019. Two-stage integrated system photo-electro-fenton and biological oxidation process assessment of sanitary landfill leachate treatment: An intermediate products study. Chem. Eng. J. 372:471–82. doi:10.1016/j.cej.2019.04.162.
  • Silva, T. F. C. V., M. E. F. Silva, A. Cristina Cunha-Queda, A. Fonseca, I. Saraiva, R. A. R. Boaventura, and V. J. P. Vilar. 2013. Sanitary landfill leachate treatment using combined solar photo-fenton and biological oxidation processes at pre-industrial scale. Chem. Eng. J. 228:850–66. doi:10.1016/j.cej.2013.05.060.
  • Sinha, S., D. Roy, S. Neogi, and S. De. 2018. Application of advanced oxidation process for the treatment of hydrofracked water. Environmental Division 2018 - Core Programming Area at the 2018 AIChE Annual Meeting Pittsburgh, PA, 24–26.
  • Somani, M., M. Datta, S. K. Gupta, T. R. Sreekrishnan, and G. V. Ramana. 2019. Comprehensive assessment of the leachate quality and its pollution potential from six municipal waste dumpsites of India. Bioresour. Technol. Rep. 6:198–206. doi:10.1016/j.biteb.2019.03.003.
  • Song, J., W. Zhang, J. Gao, X. Hu, C. Zhang, Q. He, F. Yang, H. Wang, X. Wang, and X. Zhan. 2020. A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. Bioresour. Technol. 296:122344. doi:10.1016/j.biortech.2019.122344.
  • Spasiano, D., R. Marotta, S. Malato, P. Fernandez-Ibañez, and I. Di Somma. 2015. Solar photocatalysis: Materials, reactors, some commercial, and pre-industrialized applications. A comprehensive approach. In Applied catalysis B: Environmental, Vols. 170–171, 90–123. Elsevier. doi:10.1016/j.apcatb.2014.12.050.
  • Starling, M. C. V. M., L. A. S. Castro, R. B. P. Marcelino, M. M. D. Leão, and C. C. Amorim. 2017. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources. Environ.l Sci. Pollution Res. 24 (7):6222–32. doi:10.1007/s11356-016-6157-8.
  • Stoyanova, A. M., H. Y. Hitkova, N. K. Ivanova, A. D. Bachvarova-Nedelcheva, R. S. Iordanova, and M. P. Sredkova. 2013. Photocatalytic and antibacterial activity of Fe-doped TiO 2 nanoparticles prepared by nonhydrolytic sol-gel method. Bulgarian Chem. Comm. 45 (4):497–504.
  • Sui, Q., W. Zhao, X. Cao, S. Lu, Z. Qiu, X. Gu, and G. Yu. 2017. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor. J. Hazard. Mater. 323:99–108. doi:10.1016/j.jhazmat.2016.03.047.
  • Swati, T. I. S., V. K. Vijay, and P. Ghosh. 2018. Scenario of landfilling in India: Problems, challenges, and recommendations. In Handbook of environmental materials management, 1–16. Springer International Publishing. doi:10.1007/978-3-319-58538-3_167-1.
  • Talalaj, I. A., and P. Biedka. 2016. Use of the landfill water pollution index (LWPI) for groundwater quality assessment near the landfill sites. Environ.l Sci. Pollution Res. 23 (24):24601–13. doi:10.1007/s11356-016-7622-0.
  • Tao, Q., J. Luo, J. Zhou, S. Zhou, G. Liu, and R. Zhang. 2014. Effect of dissolved oxygen on nitrogen and phosphorus removal and electricity production in microbial fuel cell. Bioresour. Technol. 164:402–07. doi:10.1016/j.biortech.2014.05.002.
  • Tejera, J., D. Hermosilla, A. Gascó, R. Miranda, V. Alonso, C. Negro, and Á. Blanco. 2021. Treatment of mature landfill leachate by electrocoagulation followed by fenton or UVA-LED photo-fenton processes. J. Taiwan Inst. Chem. Eng. 119:33–44. doi:10.1016/j.jtice.2021.02.018.
  • Thornton, R. J., and F. C. Blanc. 1973. Leachate treatment by coagulation and precipitation. J. Environ. Eng. Div. Proc. ASCE 99 (EE4):535–44.
  • Tian, Y., Y. Yao, S. Chang, Z. Zhao, Y. Zhao, X. Yuan, F. Wu, and H. Sun. 2018. Occurrence and phase distribution of neutral and ionizable per- and Polyfluoroalkyl Substances (PFASs) in the atmosphere and plant leaves around landfills: A case study in Tianjin, China. Environ. Sci. Technol. 52 (3):1301–10. doi:10.1021/acs.est.7b05385.
  • Tolosana-Moranchel, Á., A. Manassero, M. L. Satuf, O. M. Alfano, J. A. Casas, and A. Bahamonde. 2019. TiO2-rGO photocatalytic degradation of an emerging pollutant: Kinetic modelling and determination of intrinsic kinetic parameters. J. Environ. Chem. Eng. 7 (5):103406. doi:10.1016/j.jece.2019.103406.
  • Tripathy, B. K., G. Ramesh, A. Debnath, and M. Kumar. 2019. Mature landfill leachate treatment using sonolytic-persulfate/hydrogen peroxide oxidation: Optimization of process parameters. Ultrason. Sonochem. 54:210–19. doi:10.1016/j.ultsonch.2019.01.036.
  • Tsui, T.-H., H. Wu, B. Song, -S.-S. Liu, A. Bhardwaj, and J. W. C. Wong. 2020. Food waste leachate treatment using an Upflow Anaerobic Sludge Bed (UASB): Effect of conductive material dosage under low and high organic loads. Bioresour. Technol. 304:122738. doi:10.1016/j.biortech.2020.122738.
  • Tumen Ozdil, N. F., and A. Tantekin. 2016. Exergy and exergoeconomic assessments of an electricity production system in a running wastewater treatment plant. Renew. Energy 97:390–98. doi:10.1016/j.renene.2016.05.039.
  • Us Saqib, N., R. Adnan, and I. Shah. 2017. Modifications of pure and Ag doped TiO2 by pre-sulphated and calcination temperature treatments. Res. Chem. Intermediates 43 (11):6571–88. doi:10.1007/s11164-017-3005-5.
  • Vaccari, M., T. Tudor, and G. Vinti. 2019. Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: An overview. Waste Manage. 95:416–31. doi:10.1016/j.wasman.2019.06.032.
  • Vahabian, M., Y. Hassanzadeh, and S. Marofi. 2019. Assessment of landfill leachate in semi-arid climate and its impact on the groundwater quality case study: Hamedan, Iran. Environ. Monit. Assess. 191 (2):1–19. doi:10.1007/s10661-019-7215-8.
  • Vakalis, S., K. Moustakas, D. Malamis, A. Sotiropoulos, and S. Malamis. 2017. Assessing the removal of heavy metals in industrial wastewater by means of chemical exergy. Desalination Water Treatment 91:146–51. doi:10.5004/dwt.2017.20588.
  • Venkatesh, S., A. R. Quaff, N. D. Pandey, and K. Venkatesh. 2015. Impact of ozonation on decolorization and mineralization of azo dyes: Biodegradability enhancement, by-products formation, required energy and cost. Ozone 37 (5):420–30. doi:10.1080/01919512.2015.1027810.
  • Vymazal, J., Y. Zhao, and Ü. Mander. 2021. Recent research challenges in constructed wetlands for wastewater treatment: A review. Ecol. Eng. 169:106318. doi:10.1016/j.ecoleng.2021.106318.
  • Wang, J. L., and L. J. Xu. 2012. Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Crit. Rev. Environ. Sci. Technol. 42 (3):251–325. doi:10.1080/10643389.2010.507698.
  • Wang, Z., Y. Peng, L. Miao, T. Cao, F. Zhang, S. Wang, and J. Han. 2016. Continuous-flow combined process of nitritation and ANAMMOX for treatment of landfill leachate. Bioresour. Technol. 214:514–19. doi:10.1016/j.biortech.2016.04.118.
  • Wang, C., X. Sun, H. Shan, H. Zhang, and B. Xi. 2021. Degradation of landfill leachate using UV-TiO2 photocatalysis combination with aged waste reactors. Processes 9 (6):946. doi:10.3390/pr9060946.
  • Wiszniowski, J., D. Robert, J. Surmacz-Gorska, K. Miksch, and J.-V. Weber. 2006. Leachate detoxification by combination of biological and TiO2-photocatalytic processes. Water Sci. Technol. 53 (3):181–90. doi:10.2166/wst.2006.091.
  • Wu, D., T. Wang, X. Huang, J. Dolfing, and B. Xie. 2015. Perspective of harnessing energy from landfill leachate via microbial fuel cells: Novel biofuels and electrogenic physiologies. Appl. Microbiol. Biotechnol. 99 (19):7827–36. doi:10.1007/s00253-015-6857-x.
  • Wu, C., W. Chen, Z. Gu, and Q. Li. 2021. A review of the characteristics of fenton and ozonation systems in landfill leachate treatment. Sci.Total Environ. 762:143131. doi:10.1016/j.scitotenv.2020.143131.
  • Xie, Z., Z. Wang, Q. Wang, C. Zhu, and Z. Wu. 2014. An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: Performance and microbial community identification. Bioresour. Technol. 161:29–39. doi:10.1016/j.biortech.2014.03.014.
  • Xie, W., W. Zhong, B. M. R. Appenzeller, J. Zhang, M. Junaid, and N. Xu. 2020. Nexus between perfluoroalkyl compounds (PFCs) and human thyroid dysfunction: A systematic review evidenced from laboratory investigations and epidemiological studies. Crit. Rev. Environ. Sci. Technol. 1–46. doi:10.1080/10643389.2020.1795052.
  • Xing, Z., J. Zhang, J. Cui, J. Yin, T. Zhao, J. Kuang, Z. Xiu, N. Wan, and W. Zhou. 2018. Recent advances in floating TiO2-based photocatalysts for environmental application. Appl. Catal. B 225:452–67. doi:10.1016/j.apcatb.2017.12.005.
  • Xu, Y., C. Chen, X. Li, J. Lin, Y. Liao, and Z. Jin. 2017. Recovery of humic substances from leachate nanofiltration concentrate by a two-stage process of tight ultrafiltration membrane. J. Clean. Prod. 161:84–94. doi:10.1016/j.jclepro.2017.05.095.
  • Yaghmaien, K., M. Hadei, P. Hopke, S. Gharibzadeh, M. Kermani, M. Yarahmadi, B. Emam, and A. Shahsavani. 2019. Comparative health risk assessment of BTEX exposures from landfills, composting units, and leachate treatment plants. Air Qual. Atmos. Health 12 (4):443–51. doi:10.1007/s11869-019-00669-w.
  • Yan, H., I. T. Cousins, C. Zhang, and Q. Zhou. 2015. Perfluoroalkyl acids in municipal landfill leachates from China: Occurrence, fate during leachate treatment and potential impact on groundwater. Sci. Total Environ. 524–525:23–31. doi:10.1016/j.scitotenv.2015.03.111.
  • Yasmin, C., E. Lobna, M. Mouna, D. Kais, K. Mariam, S. Rached, C. Abdelwaheb, and T. Ismail. 2020. New trend of Jebel Chakir landfill leachate pre-treatment by photocatalytic TiO2/Ag nanocomposite prior to fermentation using Candida tropicalis strain. Int. Biodeterior. Biodegradation 146:104829. doi:10.1016/j.ibiod.2019.104829.
  • Youcai, Z. 2018. Leachate generation and characteristics. In Pollution control technology for leachate from municipal solid waste, Vols. 1–30. Elsevier. doi:10.1016/b978-0-12-815813-5.00001-2.
  • Zegzouti, Y., A. Boutafda, L. El Fels, M. El Hadek, A. Lebrihi, F. Bekkaoui, and M. Hafidi. 2019. Quality and quantity of leachate with different ages and operations in semi-arid climate. Desalination Water Treatment 152:174–84. doi:10.5004/dwt.2019.24017.
  • Zhang, G., H. Zhang, Y. Ma, G. Yuan, F. Yang, and R. Zhang. 2014a. Membrane filtration biocathode microbial fuel cell for nitrogen removal and electricity generation. Enzyme Microb. Technol. 60:56–63. doi:10.1016/j.enzmictec.2014.04.005.
  • Zhang, L., J. Zhou, J. Li, G. Liu, X. Lin, B. Mao, R. Liu, S. Zhang, and J.-Q. Wang. 2014b. Surface structural reconstruction for optical response in iodine-modified TiO 2 photocatalyst system. J. Phys. Chem. C 118 (25):13726–32. doi:10.1021/jp503966r.
  • Zhang, C., M. Jin, J. Tang, and X. Gao. 2018. Removal of cyclic volatile methylsiloxanes in effluents from treated landfill leachate by electrochemical oxidation. J. Mater. Cycles Waste Manage. 20 (1):690–94. doi:10.1007/s10163-016-0554-4.
  • Zhang, T., Y. Liu, Y. Rao, X. Li, D. Yuan, S. Tang, and Q. Zhao. 2020. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chem. Eng. J. 384:123350. doi:10.1016/j.cej.2019.123350.
  • Zhao, X., L. Guo, and J. Qu. 2014. Photoelectrocatalytic oxidation of Cu-EDTA complex and electrodeposition recovery of Cu in a continuous tubular photoelectrochemical reactor. Chem. Eng. J. 239:53–59. doi:10.1016/j.cej.2013.10.088.
  • Zhao, J., F. Ouyang, Y. Yang, and W. Tang. 2020. Degradation of recalcitrant organics in nanofiltration concentrate from biologically pretreated landfill leachate by ultraviolet-fenton method. Sep. Purif. Technol. 235:116076. doi:10.1016/j.seppur.2019.116076.
  • Zhao, C., J. Zhou, Y. Yan, L. Yang, G. Xing, H. Li, P. Wu, M. Wang, and H. Zheng. 2021. Application of coagulation/flocculation in oily wastewater treatment: A review. Sci.Total Environ. 765:142795. doi:10.1016/j.scitotenv.2020.142795.
  • Zielińska, M., D. Kulikowska, and M. Stańczak. 2020. Adsorption – Membrane process for treatment of stabilized municipal landfill leachate. Waste Manage. 114:174–82. doi:10.1016/j.wasman.2020.07.011.
  • Zolfaghari, M., K. Jardak, P. Drogui, S. K. Brar, G. Buelna, and R. Dubé. 2016. Landfill leachate treatment by sequential membrane bioreactor and electro-oxidation processes. J. Environ. Manage. 184:318–26. doi:10.1016/j.jenvman.2016.10.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.