5,051
Views
1
CrossRef citations to date
0
Altmetric
Technical Papers

Computational modeling of woodstove pollutants in dilution tunnels

, ORCID Icon & ORCID Icon
Pages 700-709 | Received 08 Oct 2021, Accepted 26 Jan 2022, Published online: 01 Jul 2022

References

  • Allen, G., B. Morin, M. Ahmadi, and L. Rector. 2022. Online measurement of PM from residential wood heaters in a dilution tunnel. J. Air Waste Manage. Assoc.
  • ASTM E2515-11. 2017. Standard test method for determination of particulate matter emissions collected by a dilution tunnel. West Conshohocken, PA: ASTM International. doi:10.1520/E2515-11R17.
  • Birol, F. 2010. World energy outlook. Int. Energy Agency 1. https://scholar.google.com/scholar_lookup?title=World%20energy%20outlook%202010&publication_year=2010&author=F%20Birol
  • Boman, C., A. Nordin, R. Westerholm, and E. Pettersson. 2005. Evaluation of a constant volume sampling setup for residential biomass fired appliances—influence of dilution conditions on particulate and PAH emissions. Biomass Bioenergy 29 (4):258–68. doi:10.1016/j.biombioe.2005.03.003.
  • Breuer, M., H. Tarik Baytekin, and E. A. Matida. 2006. Prediction of aerosol deposition in 90∘ bends using LES and an efficient Lagrangian tracking method. J. Aerosol Sci. 37 (11):1407–28.
  • Brockmann, J. E. 2001. Sampling and transport of aerosols. Aerosol Meas. 2:143–95.
  • Cong, X. C., G. S. Yang, J. H. Qu, J. J. Zhao, et al. 2017. A model for evaluating the particle penetration efficiency in a ninety-degree Bend with a circular-cross section in laminar and turbulent flow regions. Powder Technol. 305:771–81. doi:10.1016/j.powtec.2016.10.074.
  • Eilenberg, S. R., K. R. Bilsback, M. Johnson, J. K. Kodros, E. M. Lipsky, A. Naluwagga, K. M. Fedak, M. Benka-Coker, B. Reynolds, J. Peel, et al. 2018. Field measurements of solid-fuel cookstove emissions from uncontrolled cooking in China, Honduras, Uganda, and India. Atmos. Environ. 190:, 116–125. doi:10.1016/j.atmosenv.2018.06.041.
  • Habibi, K. 1970. Characterization of particulate lead in vehicle exhaust-experimental techniques. Environ. Sci. Technol. 4 (3):239–48. doi:10.1021/es60038a001.
  • He, C., and G. Ahmadi. 1999. Particle deposition in a nearly developed turbulent duct flow with electrophoresis. Journal of Aerosol Science 30 (6):813–31. doi:10.1016/S0021-8502(98)00760-5.
  • Mofakham, A. A., and G. Ahmadi. 2019. Particles dispersion and deposition in inhomogeneous turbulent flows using continuous random walk models. Phys. Fluids 31 (8):083301–13. doi:10.1063/1.5095629.
  • Mofakham, A. A., and G. Ahmadi. 2020. On random walk models for simulation of particle-laden turbulent flows. Int. J. Multiphase Flow 122:103157. doi:10.1016/j.ijmultiphaseflow.2019.103157.
  • Obaidullah, M., B. Svend, and D. R. Jacques. 2018. Investigation of optimal dilution ratio from a dilution tunnel using in particulate matter measurement. Int. J. Eng. Sci. Technol. 5 (1):17–33. doi:10.15282/ijets.v5i1.2802.
  • Ochieng, C. A., C. Tonne, and S. Vardoulakis. 2013. A comparison of fuel use between a low cost, improved wood stove and traditional three-stone stove in rural Kenya. Biomass Bioenergy 58:258–66. doi:10.1016/j.biombioe.2013.07.017.
  • Peters, T. M., and D. Leith. 2004. Particle deposition in industrial duct bends. Ann. Occup. Hyg. 48 (5):483–90.
  • Pui, D. Y. H., F. Romay-Novas, and B. Y. H. Liu. 1987. Experimental study of particle deposition in bends of circular cross section. Aerosol Sci. Technol. 7 (3):301–15. doi:10.1080/02786828708959166.
  • Quek, T. Y., C.-H. Wang, and M. B. Ray. 2005. Dilute gas− solid flows in horizontal and vertical bends. Ind. Eng. Chem. Res. 44 (7):2301–15. doi:10.1021/ie040123i.
  • Sevault, A., R. A. Khalil, B. C. Enger, Ø. Skreiberg, F. Goile, L. Wang, M. Seljeskog, and R. Kempegowda. 2017. Performance evaluation of a modern wood stove using charcoal. Energy Procedia 142:192–97. doi:10.1016/j.egypro.2017.12.031.
  • Sun, K., L. Lu, H. Jiang, H. Jin, et al. 2013. Experimental study of solid particle deposition in 90 ventilated bends of rectangular cross section with turbulent flow. Aerosol Sci. Technol. 47 (2):115–24. doi:10.1080/02786826.2012.731094.
  • Tian, L., and G. Ahmadi. 2007. Particle deposition in turbulent duct flows - Comparisons of different model predictions. Journal of Aerosol Science 38 (4):377–97. doi:10.1016/j.jaerosci.2006.12.003.
  • Tissari, J., K. Hytönen, J. Lyyränen, and J. Jokiniemi. 2007. A novel field measurement method for determining fine particle and gas emissions from residential wood combustion. Atmos. Environ. 41 (37):8330–44. doi:10.1016/j.atmosenv.2007.06.018.
  • Tsai, C.-J., and D. Y. H. Pui. 1990. Numerical study of particle deposition in bends of a circular cross-section-laminar flow regime. Aerosol Sci. Technol. 12 (4):813–31. doi:10.1080/02786829008959395.
  • US Environmental Protection Agency. 2000. Method 5G determination of particulate matter emissions from wood heaters (dilution tunnel sampling location). Fed. Regist. 65 (201):61867–76.
  • Walters, K., and D. Cokljat. 2008. A three-equation eddy-viscosity model for reynolds-averaged navier–stokes simulations of transitional flow. Journal of Fluids Engineering 130 (12):121401-1-14. doi:10.1115/1.2979230.
  • Wilson, S. R., Y. Liu, E. A. Matida, M. R. Johnson, et al. 2011. Aerosol deposition measurements as a function of Reynolds number for turbulent flow in a ninety-degree pipe Bend. Aerosol Sci. Technol. 45 (3):364–75. doi:10.1080/02786826.2010.538092.