595
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Verification of algorithm for automatic detection of electronic devices mounted on waste printed circuit boards

ORCID Icon, &
Pages 420-433 | Received 15 Sep 2021, Accepted 01 Feb 2022, Published online: 08 Apr 2022

References

  • Adibhatla, V. A., H. C. Chih, C. C. Hsu, J. Cheng, M. F. Abbod, and J. S. Shieh. 2020. Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electron 9:1547. doi:https://doi.org/10.3390/electronics9091547.
  • Adibhatla, V. A., H. C. Chih, C. C. Hsu, J. Cheng, M. F. Abbod, and J. S. Shieh. 2021. Applying deep learning to defect detection in printed circuit boards via a newest model of you-only-look-once. Math. Biosci. Eng. 18:4411–28. doi:https://doi.org/10.3934/mbe.2021223.
  • Aizawa, H., Y. Hirai, and S. Sakai. 2009. Recycling of small electrical and electronic equipment waste. J. Mater. Cycles Waste Mgt. 20:371–82. (in Japanese).
  • Chiah, C. K., C. X. Teng, C. K. Siew, and S. Y. Chark. 2012. 2-d location pointing system for individual component on device under test by using LabVIEW. Proc. 2012 IEEE Conf. Sustain. Util. Dev. Engin. Tech., Kuala Lumpur, Malaysia, 248–52.
  • Dai, W. T., A. Mujeeb, M. Erdt, and A. Sourin. 2020. Soldering defect detection in automatic optical inspection. Adv. Eng. Inform. 43:101004. doi:https://doi.org/10.1016/j.aei.2019.101004.
  • Dervisevic, I., D. Minic, Z. Kamberovic, V. Cosovic, and M. Ristic. 2013. Characterization of PCBs from computers and mobile phones, and the proposal of newly developed materials for substitution of gold, lead and arsenic. Environ. Sci. Pollut. Res. 20:4278–92. doi:https://doi.org/10.1007/s11356-012-1448-1.
  • Esaki, H., K. Kagii, T. Umezaki, and T. Horikoshi. 2006. Hierarchical automatic classification system of electronic parts. Trans. Inst. Elect. Engin. Japan. C 126:1447–53. (in Japanese).
  • Hayashi, N., S. Koyanaka, and T. Oki. 2019. Constructing an automatic object-recognition algorithm using labeling information for efficient recycling of WEEE. Waste Manag. 88:337–46. doi:https://doi.org/10.1016/j.wasman.2019.03.065.
  • Hu, B., and J. H. Wang. 2020. Detection of PCB surface defects with improved Faster-RCNN and feature pyramid network. IEEE Access 8:108335–45. doi:https://doi.org/10.1109/ACCESS.2020.3001349.
  • Lefkaditis, D., and G. Tsirigotis. 2010. Intelligent optical classification system for electronic components. Electron. Electr. Eng. 98:10–14.
  • Li, Y. T., P. Kuo, and J. I. Guo. 2021. Automatic industry PCB board DIP process defect detection system based on deep ensemble self-adaption method. IEEE Trans. Compon. Packaging Manuf. Technol. 11:312–23. doi:https://doi.org/10.1109/TCPMT.2020.3047089.
  • Li, J., W. Y. Li, Y. Q. Chen, and J. A. Gu. 2021. A PCB electronic components detection network design based on effective receptive field size and anchor size matching. Comput. Intell. Neurosci. 6682710. doi:https://doi.org/10.1155/2021/6682710.
  • Lian, J., L. T. Wang, T. Y. Liu, X. Ding, and Z. G. Yu. 2021. Automatic visual inspection for printed circuit board via novel Mask R-CNN in smart city applications. Sustain. Energy Technol. Assess. 44:101032.
  • Matsunaga, E., T. Minowa, K. Takahashi, H. Arai, and T. Sawada. 2015. Resource visualization technology for metal contents of printed circuit boards –Various electronic component detection using image processing. Proc. 26th Ann. Conf. Japan Soc. Mater. Cycles Waste Mgmt., Fukuoka, Japan, 169–70. (in Japanese).
  • MineralPrices.com. 2020. Metal prices April 2020 in review. Accessed June 28, 2020. https://mailchi.mp/3a204a7c02c4/mineralpricescom-april-2020-4805568
  • Mogi, T., M. Namekawa, and Y. Ueda. 2012. Detection of insertion error parts in electronic boards using HSV color format. Proc. 12th I.C. Intell. Sys. Design Apps., Kochi, India, 357–62.
  • Muto, S. 1995. Mathematical statistics, 54–57. Tokyo, Japan: Asakura Publishing Co. Ltd. (in Japanese).
  • Nishimura, K., M. Yanabe, M. Hashimoto, T. Araki, T. Nagatani, T. Moriyama, and S. Maeda. 2018. Proposal of electronic component visual inspection method with histogram-based local feature. J. Jpn. Soc. Precis. Eng. 84:664–70. (in Japanese). doi:https://doi.org/10.2493/jjspe.84.664.
  • Nishimura, K., M. Yanabe, T. Nagatani, T. Moriyama, and S. Maeda. 2019. Proposal on improvement of defect identification performance by dimensional reduction focusing on localization of HOG feature in electronic component inspection. J. Jpn. Soc. Precis. Eng. 85:469–76. (in Japanese). doi:https://doi.org/10.2493/jjspe.85.469.
  • Ohta, N. 2009. Color engineering, 45–62. Tokyo, Japan: Tokyo Denki University Press. (in Japanese).
  • Oki, T. 2014. Physical separation technology to support the strategic development of urban mining –development of unused/hard-to-use resources and a future vision of resources for Japan. Synthes. Engl. Ed. 6:232–40.
  • Silva, L. H. D., A. A. F. Junior, G. O. A. Azevedo, S. C. Oliveira, and B. J. T. Fernandes. 2021. Estimating recycling return of integrated circuits using computer vision on printed circuit boards. Appl. Sci. -Basel 11:2808. doi:https://doi.org/10.3390/app11062808.
  • Xia, S. Y., F. Wang, F. Xie, L. Huang, Q. Wang, and X. Ling. 2021. An efficient and robust target detection algorithm for identifying minor defects of printed circuit board based on PHFE and FL-RFCN. Front. Phys. 9:661091. doi:https://doi.org/10.3389/fphy.2021.661091.
  • Ye, R. F., C. S. Pan, P. Y. Hung, M. Chang, and K. Y. Chen. 2020. Detection and classification of printed circuit board assembly defects based on deep learning. Chi. J. Mech. Eng. 41:401–07.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.