5,155
Views
3
CrossRef citations to date
0
Altmetric
Technical Papers

Realistic operation of two residential cordwood-fired outdoor hydronic heater appliances—Part 1: Particulate and gaseous emissions

, , &
Pages 738-761 | Received 19 Oct 2021, Accepted 31 Jan 2022, Published online: 01 Jul 2022

References

  • Ahmadi, M., G. Allen, B. Morin, and L. Rector. 2020. Interim report: Development of an integrated duty-cycle test method for cordwood stoves. NYSERDA Report 21-02. Albany: NYSERDA.
  • Ahmadi, M., J. Minot, G. Allen, and L. Rector. 2020. Investigation of real-life operating patterns of wood-burning appliances using stack temperature data. J. Air Waste Manage. Assoc. 70 (4):393–409. doi:10.1080/10962247.2020.1726838.
  • Allen, G., and L. Rector. 2020. Characterization of residential Woodsmoke PM2.5 in the Adirondacks of New York. Aerosol Air Qual. Res. 20:2419–32. doi:10.4209/aaqr.2020.01.0005.
  • Andreae, M. O. 2019. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmos. Chem. 19 (13):8523–46. doi:10.5194/acp-19-8523-2019.
  • ASTM International. 2010. E2779-10 standard test method for determining particulate matter emissions from Pellet Heaters. West Conshohocken, PA: ASTM International.
  • Bertrand, A., G. Stefenelli, E. A. Bruns, S. M. Pieber, B. Temime-Roussel, J. G. Slowik, A. S. H. Prévôt, H. Wortham, I. El Haddad, N. Marchand. 2017. Primary emissions and secondary aerosol production potential from woodstoves for residential heating: Influence of the stove technology and combustion efficiency. Atmos. Environ. 169:65–79. doi:10.1016/j.atmosenv.2017.09.005.
  • Briggs, N. J., and C. M. Long. 2016. Critical review of black carbon and elemental carbon source apportionment in Europe and United States. Atmos. Environ. 144:409–27.doi:10.1016/j.atmosenv.2016.09.002.
  • Brookhaven National Laboratory. 2018. A test method for certification of cord wood-fired hydronic heating appliances based on a load profile: Measurement of Particulate Matter (PM) and Carbon Monoxide (CO) emissions and heating efficiency of wood-fired hydronic heating appliances. Boston: Northeast States for Coordinated Air Use Management.
  • Bruns, E. A., M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Močnik, I. El-Haddad, J. G. Slowik, J. Dommen, et al. 2015. Characterization of primary and secondary wood combustion products generated under different burner loads. Atmos. Chem. Phys. 15(5):2825–41. doi:10.5194/acp-15-2825-2015.
  • Burnet, P. G., N. G. Edmisten, P. E. Tiegs, J. E. Houck, and R. A. Yoder. 1986. Particulate, carbon monoxide, and acid emission factors for residential wood burning stoves. J. Air Pollut. Control Assoc. 36:1012–18. doi:10.1080/00022470.1986.10466139.
  • Butcher, T., and N. Russell. 2011. Review of EPA Method 28 Outdoor Wood Hydronic Heater Test Results. Albany: NYSERDA.
  • Butcher, T. A., and R. Trojanowski. 2020. Effect of Thermal Storage on the Emissions and Efficiency Performance of a Wood Pellet-fired Residential Boiler. ACS Omega 5 (44):28517–28. doi:10.1021/acsomega.0c03080.
  • Calvo, A. I., L. A. C. Tarelho, C. A. Alves, M. Duarte, and T. Nunes. 2014. Characterization of operating conditions of two residential wood combustion appliances. Fuel Process. Technol. 126:222–32. doi:10.1016/j.fuproc.2014.05.001.
  • Canadian Standards Association. 2010. Performance testing of solid-fuel-burning heating appliances. Ontario: Canadian Standards Association.
  • The Climate Registry. 2020. 2020 default emission factors. https://www.theclimateregistry.org/wp-content/uploads/2020/04/The-Climate-Registry-2020-Default-Emission-Factor-Document.pdf.
  • Garcia-Maraver, A., M. Zamorano, U. Fernandes, M. Rabaçal, and M. Costa. 2014. Relationship between fuel quality and gaseous and particulate matter emissions in a domestic pellet-fired boiler. Fuel 119 (1):141–52. doi:10.1016/j.fuel.2013.11.037.
  • Gibbs, R., and T. Butcher. 2010. Staged combustion biomass boilers: Linking high-efficiency combustion technology to regulatory test methods. Albany: New York State Energy Research and Development Authority (NYSERDA).
  • Goncalves, C., C. Alves, A. P. Fernandes, C. Monteiro, L. Tarelho, M. Evtyugina, C. Pio. 2011. Organic compounds in PM2.5 emitted from fireplace and woodstove combustion of typical Portuguese wood species. Atmos. Environ. 45(27):4533–45. doi:10.1016/j.atmosenv.2011.05.071.
  • Healy, R. M., U. Sofowote, Y. Su, J. Debosz, M. Noble, C. -H. Jeong, J.M. Wang, N. Hilker, G. J. Evans, G. Doerksen. 2017. Ambient measurements and source apportionment of fossil fuel and biomass burning black carbon in Ontario. Atmos. Environ. 161:34–47. doi:10.1016/j.atmosenv.2017.04.034.
  • Jalava, P. I., M. S. Happo, J. Kelz, T. Brunner, P. Hakulinen, J. Mäki-Paakkanen, A. Hukkanen, J. Jokiniemi, I. Obernberger, M. -R. Hirvonen. 2012. In vitro toxicological characterization of particulate emissions from residential biomass heating systems based on old and new technologies. Atmos. Environ. 50:24–35. doi:10.1016/j.atmosenv.2012.01.009.
  • Johansson, L. S., B. Leckner, L. Gustavsson, D. Cooper, C. Tullin, and A. Potter. 2004. Emission characteristics of modern and old-type residential boilers fired with wood logs and wood pellets. Atmos. Environ. 38 (25):4183–95.
  • Johansson, L. S., C. Tullin, B. Leckner, and P. Sjövall. 2003. Particle emissions from biomass combustion in small combustors. Biomass Bioenergy 25 (4):435–46.
  • Kaivosoja, T., P. I. Jalava, H. Lamberg, A. Virén, M. Tapanainen, T. Torvela, U. Tapper, O. Sippula, J. Tissari, R. Hillamo, et al. 2013. Comparison of emissions and toxicological properties of fine particles from wood and oil boilers in small (20–25 kW) and medium (5–10 MW) scale. Atmos. Environ. 77:193–201.
  • Kindbom, K., I. Mawdsley, O. -K. Nielsen, K. Saarinen, K. Jónsson, and K. Aasestad. 2017. Emission factors for SLCP emissions from residential wood combustion in the Nordic countries. Denmark: Nordic Council of Ministers.
  • Kinsey, J. S., A. Touati, T. L. B. Yelverton, J. Aurell,S. -H. Cho, W. P. Linak, and B. K. Gullett. 2012. Emissions characterization of residential wood-fired hydronic heater technologies. Atmos. Environ. 63:239–49.
  • Kistler, M., C. Schmidl, E. Padouvas, H. Giebl, J. Lohninger, R. Ellinger, H. Bauer, and H. Puxbaum. 2012. Odor, gaseous and PM10 emissions from small scale combustion of wood types indigenous to Central Europe. Atmos. Environ. 51:86–93.
  • Klauser, F., E. Carlon, M. Kistler, C. Schmidl, M. Schwabl, R. Sturmlechner, W. Haslinger, and A. Kasper-Giebl. 2018. Emission characterization of modern wood stoves under real-life oriented operating conditions. Atmos. Environ. 192: 257-26.
  • Kocbach Bølling, A., J. Pagels, K. E Yttri, L. Barregard, G. Sallsten,P. E. Schwarze, and C. Boman. 2009. Health effects of residential wood smoke particles: The importance of combustion conditions and physicochemical particle properties. Part Fibre Toxicol 6(29).
  • Kodros, J. K., E. Carter, M. Brauer, J. Volckens, K. R. Bilsback, C.L&apos, C. L'Orange, M. Johnson, and J. R. Pierce. 2018. Quantifying the Contribution to Unvertainity in Mortality Attributed to Household, Ambient, and Joint Exposure to PM2.5 from Residential Solid Fuel Use. GeoHealth 2:25–39.
  • Koraïem, M., and D. Assanis. 2021. Wood Stove Combustion Modeling and Simulation: Technical Review and Recommendations. Int. Commun. Heat Mass Transfer. 127: 105423.
  • Lamberg, H., K. Nuutinen, J. Tissari, J. Ruusunen, P. Yli-Pirilä, O. Sippula, M. Tapanainen, P. Jalava, U. Makkonen K., Teinilä, et al. 2011. Physicochemical characterization of fine particles from small-scale wood combustion. Atmos. Environ. 45 (40):7635–43.
  • Leskinen, J., J. Tissari, O. Uski, A. Virén, T. Torvela, T. Kaivosoja, H. Lamberg, I. Nuutinen, T. Kettunen, J. Joutsensaari, et al. 2014. Fine particle emissions in three different combustion conditions of a wood chip-fired appliance - Particulate physicochemical properties and induced cell death. Atmos. Environ. 86:129–39.
  • Lindberg, J., M. Wurth, B. P. Frank, S. Tang, G. La Duke, R. Trojanowski, T. Butcher, and D. Mahajan. 2022. Realistic operation of two residential cordwood fired appliances; part 2: Particle number and size. J. Air Waste Manag. Assoc.
  • Lindberg, J., R. Trojanowski, M. Wurth, S. Tang, G. La Duke, B. P. Frank, T. Butcher, and D. Mahajan. 2022. Realistic operation of two residential cordwood fired appliances; part 3: Black and brown carbon emissions. J. Air Waste Manag. Assoc.
  • Liu, Y., C. Yan, and M. Zheng. 2018. Source apportionment of black carbon during winter in Beijing. Sci. Total Environ. 618:531–41.
  • Morin, B., A. Marin, L. Rector, M. Ahmadi, and G. Allen. 2022. Impacts of wood specieis and moisture content of emissions from residential wood heaters. J. Air Waste Manag. Assoc.
  • Mousavi, A., M. H. Sowlat, C. Lovett, M. Rauber, S. Szidar, R. Bof, A. Borgini, C. De Marco, A. A. Ruprecht, and C. Sioutas. 2019. Source apportionment of black carbon (BC) from fossil fuel and biomass burning in metropolitan Milan, Italy. Atmos. Environ. 252–61.
  • Noonan, C. W., T. J. Ward, and E. O. Semmens. 2015. Estimating the Number of Vulnerable People in the United States Exposed to Residential Wood Smoke. Environ. Health Perspect. A30–A31.
  • Nussbaumer, T. 2008. Biomass combustion in Europe: Overview on technologies and regulations : Final report. Albany: New York State Energy Research and Development Authority (NYSERDA).
  • Nussbaumer, T., N. Klippel, and L. Johansson. 2008. Survey on measurement and emission factors on particulate matter from biomass combustion in IEA countries. In 16th European Biomass Conference and Exhibition. Valencia.
  • Nuutinen, K., J. Jokiniemi, O. Sippula, H. Lamberg, J. Sutinen, P.Horttanainen, and J. Tissari. 2014. Effect of air staging on fine particle, dust and gaseous emissions from masonry heaters. Biomass Bioenergy 67:167–78.
  • Orasche, J., T. Seidel, H. Hartmann, J. Schnelle-Kreis, J. C. Chow, H. Ruppert, and R. Zimmermann. 2012. Comparison of emissions from wood combustion. Part 1: Emission factors and characteristics from different small-scale residentialheating appliances considering Particulate matter and Polycyclic Aromatic Hydrocarbon (PAH)-related toxicological potential of particle-bound organic species. Energy Fuel 26:6695–704.
  • Orr, G., T. Lelyveld, and S. Burton. 2009. Insitu monitoring of efficiencies of condensing boilers and use of secondary heating. Cheltenham: GASTEC.
  • Ozgen, S., S. Becagli, V. Bernardoni, S Caserini, D. Caruso, L. Corbella. 2017. Analysis of the chemical composition of ultrafine particles from two domestic solid biomass fired room heaters under simulated real-world use. Atmos. Environ. 150:87–97.
  • Ozgen, S., S. Becagli, V. Bernardoni, S Caserini, D. Caruso, L. Corbella. 2017. Analysis of the chemical composition of ultrafine particles from two domestic solid biomass fired room heaters under simulated real-world use. Atmos. Environ. 150:87–97.
  • Penn, S. L., S. Arunachalam, M. Woody, W. Heiger-Bernays, Y. Tripodis, and J. I. Levy. 2017. Estimating State-Specific Contributions to PM2.5- and O3-Related Health Burden from Residential Combustion and Electricity Generating Unit Emissions in the United States. Environ. Health Perspect. 324–32.
  • Rajesh, T. A., and S. Ramachandran. 2017. Characteristics and source apportionment of black carbon aerosols over an urban site. Environ. Sci. Pollut. Res. 24 (9):8411–24.
  • Rector, L., M. Ahmadi, A. Marin, B. Morin, and K. Raymond. 2021. Assessment of EPA’s Residential Wood Heater Certification Program. Boston: Northeast States for Coordinated Air Use Management (NESCAUM).
  • Reichert, G., C. Schmidl, W. Haslinger, H. Stressler, R. Sturmlechner, M. Schwabl, and C. Hochenauer. 2018. Novel Method Evaluating Real-Life Performance of Firewood Roomheaters in Europe. Energy Fuel 32 (2):1874–83.
  • Reichert, G., R. Sturmlechner, H. Stressler, M. Schwabl, C. Schmidl, H. Oehler, R. Mack, and H. Hartmann. 2016. Definition of Suitable Measurement Methods and Advanced Type Testing Procedure for Real Life Conditions. Austria: Bioenergy 2020+.
  • Robinson, D. L. 2011. Australian wood heaters currently increase global warming and health costs. Atmos Pollut Res 2 (3):267–74.
  • Rogalsky, D. K., P. Mendola, T. A. Metts, and W. J. Martin II. 2014. Estimating the Number of Low-Income Americans Exposed to Household Air Pollution from Burning Solid Fuels. Environ. Health Perspect. 122 (8):806–10.
  • Saxena, R. C., D. K. Adhikari, and H. B. Goyal. 2009. Biomass-Based energy fuel through biochemical routes: A review. Renewable Sustainable Energy Rev. 13:167–78.
  • Schmidl, C., M. Luisser, E. Padouvas, L. Lasselsberger, M. Rzaca, C. Ramirez-Santa Cruz, M. Handler, G. Peng, H. Bauer, and H. Puxbaum. 2011. Particulate and gaseous emissions from manually and automatically fired small scale combustion systems. Atmos. Environ. 45:7443–54.
  • Shen, G., M. Xue, Y. Chen, C. Yang, W. Li, H. Shen, andY. Huang. 2014. Comparison of carbonaeous particulate matter emission factors among different solid fuels burned in residential stoves. Atmos. Environ. 89:337–45.
  • Shen, G., M. Xue, S. Wei, Y. Chen, Q. Zhao, B. Li,H. Wu, and S. Tao. 2013. Influence of fuel moisture, charge size, feeding rate and air ventiliation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci. 25 (9):1808–16.
  • Siegenthaler, J. 2017. Hydronics for High Efficiency Biomass Boilers. NYSERDA.
  • Sippula, O., K. Hytönen, J. Tissari, T. Raunemaa, and J. Jokiniemi. 2007. Effect of Wood Fuel on the Emissions from a Top-Feed Pellet Stove. Energy Fuel 21 (2):1151–60.
  • Smith, W. B. 2014. Evaluation of wood fuel moisture measurement accuracy for cordwood-fired advanced hydronic heaters. Albany: NYSERDA.
  • Torvela, T., J. Tissari, O. Sippula, T. Kaivosoja, J. Leskinen, A. Viren, A. Lahde, and J. Jokiniemi. 2014. Effect of wood combustion on the morphology of freshly emitted fine particles. Atmos. Environ. 87:65–76.
  • Trojanowski, R., T. Butcher, W. George, and Y. Celebi. 2019. Performance of a Biomass Boiler in a Load Profile Test. United States: OSTI.
  • United States Environmental Protection Agency. 1996. 5TH EDITION AP-42 Section 1.10 Residential Wood Stoves. United States EPA.
  • United States Environmental Protection Agency. 2010. AP 42, Fifth Edition, Volume I Chapter 1: External Combustion Sources.
  • United States Environmental Protection Agency. 2019. Method 28 WHH for Measurement of Particulate Emissions and Heating Efficiency of Wood-Fired Hydronic Heating Appliances.
  • United States Environmental Protection Agency. 2021. Air Emissions Inventories. 2017 National Emissions Inventory (NEI) Data. United States Environmental Protection Agency.
  • U.S. Energy Information Administration. 2014 . Today in Energy- Increase in wood as main source of household heating most notable in the Northeast. March 17. https://www.eia.gov/todayinenergy/detail.php?id=15431.
  • U.S. Energy Information Administration. 2021. Biomass Explained–Wood and wood waste. May 11. https://www.eia.gov/energyexplained/biomass/wood-and-wood-waste.php.
  • US EPA Office of Air Quality Planning and Standards (OAQPS). 2016. Process for Developing Improved Cordwood Test Methods for Wood Heaters. US EPA.
  • USEPA. 2003. Compilation of air pollutant emission factors, AP-42, 5th Ed., Vol.1,Section 1.6 - Wood residue combustion in boilers. USEPA.
  • Vicente, E. D., M. A. Duarte, A. I. Calvo, T. F. Nunes, L. Tarelho, and C. A. Alves. 2015. Emission of carbon monoxide, total hydrocarbons and particulate matter during wood combustion in a stove operating under distinct conditions. Fuel Process. Technol. 131:182–92.
  • Vicente, E. D., M.A. Duarte, L. A. C. Tarelho, T. F. Nunes, F. Amato, X. Querol,C. Colombi, V. Gianelle, and C. A. Alves. 2015. Particulate and gaseous emissions from the combustion of different biofuels in a pellet stove. Atmos. Environ. 120:15–27.
  • Win, K. M., T. Persson, and C. Bales. 2012. Particles and gaseous emissions from realistic operation of residential wood pellet heating systems. Atmos. Environ. 59:320–27.