338
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

An interpretable prediction of FCM driven by small samples for energy analysis based on air quality prediction

, , , ORCID Icon &
Pages 985-999 | Received 22 Oct 2021, Accepted 04 Apr 2022, Published online: 22 Apr 2022

References

  • Anezakis, V. D., K. Dermetzis, L. Iliadis, and S. Spartalis 2016. Fuzzy cognitive maps for long-term prognosis of the evolution of atmospheric pollution, based on climate change scenarios: The case of Athens. Switzerland: Springer International Publishing.
  • Bağdatli, M. E. C., and A. Ş. Dokuz. 2021. Modeling discretionary lane-changing decisions using an improved fuzzy cognitive map with association rule mining[J]. Transp. Lett. 13 (8):623–33. doi:10.1080/19427867.2021.1919469.
  • Bakhtavar, E., S. Hosseini, K. Hewage, and R. Sadiq. 2020. Green blasting policy: Simultaneous forecast of vertical and horizontal distribution of dust emissions using artificial causality-weighted neural network. J. Clean. Prod. 283:124562. doi:10.1016/j.jclepro.2020.124562.
  • Bang, H. Q., V. Khue, N. T. Tam, and K. Lasko. 2018. Air pollution emission inventory and air quality modeling for Can Tho City, Mekong Delta, Vietnam. Air Quality, Atmosphere & Health 11 (1):35–47. doi:10.1007/s11869-017-0512-x.
  • Beig, G., S. K. Sahu, V. Anand, S. Bano, S. Maji, A. Rathod, N. Korhale, S. B. Sobhana, N. Parkhi, and P. Mangaraj. 2021. India’S Maiden AIR QUALITY forecasting framework for megacities of divergent environments: The safar-project. Environ. Model. Softw. 145:105204. doi:10.1016/j.envsoft.2021.105204.
  • Chang, Y., H. Chiao, S. Abimannan, Y.-P. Huang, Y.-T. Tsai, and K.-M. Lin. 2020. An LSTM-based aggregated model for air pollution forecasting. Atmos Pollut Res 11 (8):1451–63. doi:10.1016/j.apr.2020.05.015.
  • Chen, Y., C. W. Y. Wong, R. Yang, and X. Miao. 2021. Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China. Energy 237:121623. doi:10.1016/j.energy.2021.121623.
  • Cui, J., T. Lei, X. Bo, P. Wu, J. Qu, S. Gao, Tian, F., and S. Li 2020. Studies on air pollutant emission inventory and environmental impact in Hainan Province. Environ. Pollut. Prevent 6:651–59. doi:10.15985/j.cnki.1001-3865.2020.06.001.
  • De Salazar, E. M., and J. G. Sanz-Calcedo. 2019. Study on the influence of maintenance operations on energy consumption and emissions in healthcare centres by fuzzy cognitive maps. J. Build. Perform. Simul. 12 (4):420–32. doi:10.1080/19401493.2018.1543351.
  • Ebrahimi-Khusfi, Z., R. Taghizadeh-Mehrjardi, M. Kazemie, and A. R. Nafarzadegan. 2021. Predicting the ground-level pollutants concentrations and identifying the influencing factors using machine learning, wavelet transformation, and remote sensing techniques. Atmos Pollut Res 12 (5):101064. doi:10.1016/j.apr.2021.101064.
  • Faisal, M., Z. Wu, H. Wang, Z. Hussain, and C. Shen. 2021. Geochemical mapping, risk assessment, and source identification of heavy metals in road dust using Positive Matrix Factorization (PMF). Atmosphere 12 (5):614. doi:10.3390/atmos12050614.
  • Guo, X., D. Ren, and C. Li. 2020. Study on clean heating based on air pollution and energy consumption. Environ. Sci. Pollut. Res. 27 (6):6549–59. doi:10.1007/s11356-019-07093-8.
  • Guo, H., J. Wei, W. Li, H. C. Ho, Y. Song, J. Wu, and W. Li. 2020. Do socioeconomic factors modify the effects of PM1 and SO2 on lung cancer incidence in China? Sci. Total. Environ. 756:143998. doi:10.1016/j.scitotenv.2020.143998.
  • He, L., F. Yin, D. Wang, X. Yang, and F. Xie. 2020. Research on the relationship between energy consumption and air quality in the Yangtze River Delta of China: An empirical analysis based on 20 sample cities. Environ. Sci. Pollut. Res. 2019. 27 (5):4786–98. doi:10.1007/s11356-019-06984-0.
  • Hu, X., Q. Liu, Q. Fu, H. Xu, Y. Shen, D. Liu, Y. Wang, H. Jia, and J. Cheng. 2021. A high-resolution typical pollution source emission inventory and pollution source changes during the COVID-19 lockdown in a megacity, China. Environ. Sci. Pollut. Res. 28 (33):45344–52. doi:10.1007/s11356-020-11858-x.
  • Kaya, K., and Ş. G. Öğüdücü. 2020. Deep flexible sequential (DFS) model for air pollution forecasting. Sci Rep 10 (1):3346. doi:10.1038/s41598-020-60102-6.
  • Kazerooni, M., P. Nguyen, and A. R. Fayek. 2021. Prioritizing construction labor productivity improvement strategies using fuzzy multi-criteria decision making and fuzzy cognitive maps[J]. Algorithms 14 (9):254. doi:10.3390/A14090254.
  • Kosko, B. 1986. Fuzzy cognitive maps. Int. J. Man Mach. Studies 24 (1):65–75. doi:10.1016/S0020-7373(86)80040-2.
  • Kraus, M., and S. Feuerriegel. 2019. Forecasting remaining useful life: Interpretable deep learning approach via variational Bayesian inferences. Decis Support Syst 125:113100. doi:10.1016/j.dss.2019.113100.
  • Langone, R., A. Cuzzocrea, and N. Skantzos. 2020. Interpretable anomaly prediction: Predicting anomalous behavior in industry 4.0 settings via regularized logistic regression tools. Data Knowl. Eng. 130 (3):101850. doi:10.1016/j.datak.2020.101850.
  • Li, L., X. Hong, and J. Wang. 2020. Evaluating the impact of clean energy consumption and factor allocation on China’s air pollution: A spatial econometric approach. Energy 195:116842. doi:10.1016/j.energy.2019.116842.
  • Li, X., J. Wu, M. Elser, T. Feng, J. Cao, I. El-Haddad, R. Huang, X. Tie, A. S. H. Prévôt, and L. Guohui. 2018. Contributions of residential coal combustion to the air quality inBeijing–Tianjin–Hebei (BTH), China: A case study[J]. Atmos. Chem. Phys. 18 (14). doi: 10.5194/acp-18-10675-2018.
  • Lin, Y.-C., S.-C. Hsu, C. C.-K. Chou, R. Zhang, W. Yunfei, S.-J. Kao, L. Luo, C.-H. Huang, S.-H. Lin, and Y.-T. Huang. 2016. Wintertime haze deterioration in Beijing by industrial pollution deduced from trace metal fingerprints and enhanced health risk by heavy metals[J]. Environ. Pollut. 216:208. doi:10.1016/j.envpol.2015.07.044.
  • Liu, S., J. Shangguan, S. Yang, W. Du, X. Yan, K. Zhang, and R. Rosa Plá. 2019. Producing effective and clean coke for household combustion activities to reduce gaseous pollutant emissions[J]. J. Chem. 2019. doi:10.1155/2019/7142804.
  • Liu, D., L. Zhang, T. Luo, L. Tao, and Y. Wu. 2020. Towards interpretable and robust hand detection via pixel-wise prediction. Pattern Recognit 105:107202. doi:10.1016/j.patcog.2020.107202.
  • Luo, M., J. Li, and S. Hu. 2019. Exploring regional air quality evolution by developing a driving force model: Case study of Beijing[J]. J. Environ. Manage. 248 (C):109333. doi:10.1016/j.jenvman.2019.109333.
  • Mac Kinnon, M. A., J. Brouwer, and S. Samuelsen. 2018. The role of natural gas and its infrastructure in mitigating greenhouse gas emissions, improving regional air quality, and renewable resource integration[J]. Prog. Energy Combust. Sci. 64. doi:10.1016/j.pecs.2017.10.002.
  • Peng, Z., W. Liu, and S. An. 2020. Haze pollution causality mining and prediction based on multi-dimensional time series with PS-FCM. Inf Sci (Ny) 523:307–17. doi:10.1016/j.ins.2020.03.012.
  • Pereira, I. P. C., A. F. F. Ferreira, L. F. Pereira, K. Govindan, I. Meidutė-Kavaliauskienė, and R. J. C. Correia. 2020. A fuzzy cognitive mapping-system dynamics approach to energy-change impacts on the sustainability of small and medium-sized enterprises. J. Clean. Prod. 256:120154. doi:10.1016/j.jclepro.2020.120154.
  • Qin, Y., L. Höglund-Isaksson, E. Byers, K. Feng, F. Wagner, W. Peng, and D. L. Mauzerall. 2018. Air quality–carbon–water synergies and trade-offs in China’s natural gas industry[J]. Nat. Sustain. 1 (4):505–11. doi:10.1038/s41893-018-0136-7.
  • Rafael, S., V. Rodrigues, K. Oliveira, S. Coelho, and M. Lopes. 2021. How to compute long-term averages for air quality assessment at urban areas? Sci. Total. Environ. 795 (29):148603. doi:10.1016/j.scitotenv.2021.148603.
  • Rovira, J., J. L. Domingo, and M. Schuhmacher. 2020. Air quality, health impacts and burden of disease due to air pollution (PM10, PM2.5, NO2 and O3): Application of AirQ+ model to the Camp de Tarragona County (Catalonia, Spain). Sci. Total Environ. 703:135538. doi:10.1016/j.scitotenv.2019.135538.
  • Shams, S. R., A. Jahani, S. Kalantary, M. Moeinaddini, and N. Khorasani. 2021. The evaluation on artificial neural networks (ANN) and multiple linear regressions (MLR) models for predicting SO2 concentration. Urban Clim. 37:100837. doi:10.1016/j.uclim.2021.100837.
  • Shen, F., J. Liu, and K. Wu. 2020. Evolutionary multitasking fuzzy cognitive map learning[J]. Knowledge-Based Systems 192 (C):105294. doi:10.1016/j.knosys.2019.105294.
  • Tu, C., X. Mu, J. Chen, L. Kong, Z. Zhang, Y. Lu, and G. Hu. 2021. Study on the interactive relationship between urban residents’ expenditure and energy consumption of production sectors. Energy Policy 157:112502. doi:10.1016/j.enpol.2021.112502.
  • Vanberlo, B., M. A. S. Ross, J. Rivard, and R. Booker. 2021. Interpretable machine learning approaches to prediction of chronic homelessness. Eng. Appl. Artif. Intell. 102:104243. doi:10.1016/j.engappai.2021.104243.
  • Vidal, R., J. L. Salmeron, A. Mena, and V. Chulvi. 2015. Fuzzy cognitive map-based selection of TRIZ (Theory of inventive problem solving) trends for eco-innovation of ceramic industry products[J]. J. Clean. Prod. 107. doi:10.1016/j.jclepro.2015.04.131.
  • Wang, S., C. Li, and Y. Zhou. 2019. Impact of China’s economic growth and energy consumption structure on atmospheric pollutants: Based on a panel threshold model. J. Clean. Prod. 236:117694. doi:10.1016/j.jclepro.2019.117694.
  • Wang, C., J. Liu, K. Wu, and C. Ying. 2021. Learning large-scale fuzzy cognitive maps using an evolutionary many-task algorithm[J]. Appl Soft Comput 108. ( prepublish). doi:10.1016/J.ASOC.2021.107441.
  • Wang, Y., J. Wang, and M. Zhang. 2019. Spatial correlation analysis of energy consumption and air pollution in Beijing-Tianjin-Hebei region. Energy Procedia 158:4280–85. doi:10.1016/j.egypro.2019.01.797.
  • Wu, Y., R. Li, L. Cui, Y. Meng, H. Cheng, and H. Fu. 2020. The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing. Chemosphere 241:125031. doi:10.1016/j.chemosphere.2019.125031.
  • Xiong, X., L. Zhaomin, Y. Shilin, H. Tan, and H. Baixiang Xiang. 2021. Coke preheating combustion study on NOx and SO2 emission[J]. J. Energy Inst. ( prepublish). doi:10.1016/J.JOEI.2021.04.007.
  • Xiurui, G., Z. Lijuan, C. Dongsheng, J. Yuhuan, N. Zhao, L. Wenwen, and C. Shuiyuan. 2018. Air quality improvement and health benefit of PM2.5 reduction from the coal cap policy in the Beijing-Tianjin-Hebei (BTH) region, China. Environ. Sci. Pollut. Res. 25 (32). doi: 10.1007/s11356-018-3014-y.
  • Xu, J. S., D. Liu, X. F. Wu, T. V. Vu, Y. Zhang, P. Fu, Y. Sun, W. Xu, B. Zheng, and R. M. Harrison. 2021. Source apportionment of fine organic carbon at an urban site of Beijing using a chemical mass balance model. Atmos. Chem. Phys. 21 (9):7321–41. doi:10.5194/acp-21-7321-2021.
  • Yang, Z., and J. Liu. 2019. Learning of fuzzy cognitive maps using a niching-based multi-modal multi-agent genetic algorithm. Appl Soft Comput 74:356–67. doi:10.1016/j.asoc.2018.10.038.
  • Zhai, M., G. Huang, L. Liu, B. Zheng, and Y. Li. 2021. Economic modeling of national energy, water and air pollution nexus in China under changing climate conditions. Renew. Energy 170:375–86. doi:10.1016/j.renene.2021.01.011.
  • Zhang, C., D. J. Jing, C. Z. Wu, S. Li, N. Cheng, W. Li, G. Wang, B. Chen, Q. Wang, and J. Hu. 2021. Integrating chemical mass balance and the community multiscale air quality models for source identification and apportionment of PM2.5. Process Saf. Environ. Prot. 149:665–75. doi:10.1016/j.psep.2021.03.033.
  • Zhao, S., S. Liu, Y. Sun, Y. Liu, R. Beazley, and X. Hou. 2020. Assessing NO2-related health effects by non-linear and linear methods on a national level. Sci. Total. Environ. 744:140909. doi:10.1016/j.scitotenv.2020.140909.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.