387
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Development of Ag/Ag2O/ZnO photocatalyst and their photocatalytic activity towards dibutyl phthalate decomposition in water

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 1137-1152 | Received 16 Jan 2022, Accepted 12 Apr 2022, Published online: 25 Aug 2022

References

  • Al-Musawi, T., P. Rajiv, N. Mengelizadeh, F. S. Arghavan, and D. Balarak. 2021. Photocatalytic efficiency of CuNiFe2O4 nanoparticles loaded on multi-walled carbon nanotubes as a novel photocatalyst for ampicillin degradatio. J. Mol. Liq 337:116470. doi:10.1016/j.molliq.2021.116470.
  • Bhatt, D. K., and U. D. Patel. 2019. Mechanism underlying visible-light photocatalytic activity of Ag/AgBr: Experimental and theoretical approaches. J. Phys. Chem. Solids 135:109118. doi:10.1016/j.jpcs.2019.109118.
  • Cao, X. 2009. Phthalate Esters in foods: sources, occurrence, and analytical methods. Food Sci. And Food Safety 9:21–43. doi:10.1111/j.1541-4337.2009.00093.x. [Web of Science], [Pub Med], [Google schoolar].
  • Chong, M. N., B. Jin, C. W. K. Chow, and C. Saint. 2010. Recent developments in photocatalytic water treatment technology: A review. Water Res. 44:2997–3027. [Google schoolar], [Pub Med]. doi:10.1016/j.watres.2010.02.039.
  • Chu, H., X. Liu, J. Liu, J. Li, T. Wu, H. Li, W. Lei, Y. Xu, and L. Pan. 2016. Synergetic effect of Ag2O as co-catalyst for enhanced photocatalytic degradation of phenol on N-TiO2. Mater. Sci. Eng 211:128–34. doi:10.1016/j.mseb.2016.06.010.
  • Deng, H., X. Fei, Y. Yang, J. Fan, J. Yu, B. Cheng, and L. Zhang. 2021. S-scheme heterojunction based on p-type ZnMn2O4 and n-type ZnO with improved photocatalytic CO2 reduction activity. Chem. Eng. Journal 409:127377. doi:10.1016/j.cej.2020.127377.
  • Dhanasankar, M., K. K. Purushothaman, and G. Muralidharan. 2010. Optical, structural and electrochromic studies of molybdenum oxide thin films with nanorod structure. Solid State Sci 12:246–51. doi:10.1016/j.solidstatesciences.2009.10.021.
  • Dutta, D. P., A. Singh, and A. K. Tyagia. 2014. Ag doped and Ag dispersed nano ZnTiO3: Improved photocatalytic organic pollutant degradation under solar irradiation and antibacterial activity. J. Environ. Chem. Eng 2:2177–87. doi:10.1016/j.jece.2014.09.015.
  • Dutta, D. P., and A. K. Tyagi. 2016. Facile sonochemical synthesis of Ag modified Bi4Ti3O12 nanoparticles with enhanced photocatalytic activity under visible light. Mater. Res. Bull 74:397–407. doi:10.1016/j.materresbull.2015.11.005.
  • Farahani, H., M. R. Ganjali, R. Dinarvand, and P. Norouzi. 2008. Screening method for phthalate esters in water using liquid-phase microextraction based on the solidification of a floating organic microdrop combined with gas chromatography–mass spectrometry. Talanta 76:718–23. doi:10.1016/j.talanta.2008.03.002.
  • Fulekar, J., D. P. Dutta, B. Pathaka, and M. H. Fulekar. 2018. Novel microbial and root mediated green synthesis of TiO2 nanoparticles and its application in wastewater remediation. J. Chem. Technol. Biotechnol 93:736–43. doi:10.1002/jctb.5423.
  • Gomathisankar, P., K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, and S. Kaneco. 2013. Photocatalytic Hydrogen production from Aqueous Na2S + Na2SO3 solution with B-doped ZnO. ACS Sustain. Chem. Eng 1:982–88. doi:10.1021/sc400061w.
  • Gou, J., Q. Ma, X. Deng, Y. Cui, H. Zhang, X. Cheng, X. Li, M. Xie, and Q. Cheng. 2017. Fabrication of Ag2O/TiO2-Zeolite composite and its enhanced solar light photocatalytic performance and mechanism for degradation of norfloxacin. Chem. Eng. J 308:818–26. doi:10.1016/j.cej.2016.09.089.
  • Horikoshi, S., A. Tokunaga, H. Hidaka, and N. Serpone. 2004. Environmental remediation by an integrated microwave/UV illumination method: VII. Thermal/non-thermal effects in the microwave-assisted photocatalyzed mineralization of bisphenol-A. J. Photochem. Photobiol. A: Chem 162:33–40. doi:10.1016/S1010-6030(03)00312-5.
  • Jamil, T. S., H. A. Abbas, A. M. Youssief, E. S. Mansor, and F. F. Hammad. 2017. The synthesis of nano-sized undoped, Bi doped and Bi, Cu co-doped SrTiO3 using two sol–gel methods to enhance the photocatalytic performance for the degradation of dibutyl phthalate under visible light. C R Chim 20:97–106. doi:10.1016/j.crci.2016.05.022.
  • Kaneco, S., H. Katsumata, T. Suzuki, and K. Ohta. 2006. Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution—kinetics, mineralization and reaction mechanism. Chem. Eng. J 125:59–66. doi:10.1016/j.cej.2006.08.004.
  • Katal, R., S. Masudy-Panah, M. Tanhaei, M. H. D. A. Farahani, and H. Jiangyong. 2019. A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis. Chem. Eng. J 384:123384. doi:10.1016/j.cej.2019.123384.
  • Khairy, M., M. M. Mohamed, S. M. Reda, and A. Ibrahem. 2019. Effect of annealing temperature and Ag contents on the catalytic activity and supercapacitor performances of Ag@Ag2O/RGO nanocomposites. Mater. Sci. Eng. B 242:90–103. doi:10.1016/j.mseb.2019.03.007.
  • Khavar, A. H. C., G. Moussavi, A. R. Mahjoub, R. Luque, D. Rodríguez-Padrón, and M. Sattari. 2019. Enhanced visible light photocatalytic degradation of Acetaminophen with Ag2S-ZnO@rGO core-shell microsphere as a novel catalyst: Catalyst preparation and characterization and mechanistic catalytic experiments, Sep. Purif. Technol 229:115803. [Pub Med], [Google schoolar]. doi:10.1016/j.seppur.2019.115803.
  • Lei, X., T. Xu, W. Yao, Q. Wu, and R. Zou. 2020. Hollow hydroxyapatite microspheres modified by CdS nanoparticles for efficiently photocatalytic degradation of tetracycline. J. Taiwan Inst. Chem. E 106:148–58. doi:10.1016/j.jtice.2019.10.023.
  • Liang, X., P. Wang, Y. Gao, H. Huang, F. Tong, Q. Zhang, Z. Wang, Y. Liu, Z. Zheng, Y. Dai, et al. 2020. Design and synthesis of porous M-ZnO/CeO2 microspheres as efficient plasmonic photocatalysts for nonpolar gaseous molecules oxidation: Insight into the role of oxygen vacancy defects and M=Ag, Au nanoparticles. Appl. Catal. B: Environ 358:118151. doi:10.1016/j.apcatb.2019.118151.
  • Liu, C., C. Cao, X. Luo, and S. Luo. 2015. Ag-bridged Ag2O nanowire network/TiO2 nanotube array p-n heterojunction as a highly efficient and stable visible light photocatalyst. J. Hazard Mater 285:319–24. doi:10.1016/j.jhazmat.2014.12.020.
  • Liu, J., P. Wang, W. Qu, H. Li, L. Shi, and D. Zhang. 2019a. Nanodiamond-decorated ZnO catalysts with enhanced photocorrosion-resistance for photocatalytic degradation of gaseous toluene. Appl. Catal. B: Environ 257:117880. doi:10.1016/j.apcatb.2019.117880.
  • Liu, W., C. Wei, G. Wang, X. Cao, Y. Tan, and S. Hu. 2019b. In situ synthesis of plasmonic Ag@AgI/TiO2 nanocomposites with enhanced visible photocatalytic performance. Ceram. Int 45:17884–89. doi:10.1016/j.ceramint.2019.06.004.
  • Mo, J., Y. Zhang, Q. Xu, J. J. Lamson, and R. Zhao. 2009. Photocatalytic purification of volatile organic compounds in indoor air: A literature review. Atmospheric Environ 43:2229–46. doi:10.1016/j.atmosenv.2009.01.034.
  • Montini, T., M. Melchionna, M. Monai, and P. Fornasiero. 2016. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev 116:5987–6041. doi:10.1021/acs.chemrev.5b00603.
  • Petrović, M., E. Eljarrat, M. J. L. Alda, and D. Barceló. 2001. Analysis and environmental levels of endocrine-disrupting compounds in freshwater sediments. Trends in Analyt. Chem 20 (Google scoolar):637–48. doi:10.1016/S0165-9936(01)00118-2.
  • Shayegan, Z., C. Lee, and F. Haghighat. 2018. TiO2 photocatalyst for removal of volatile organic compounds in gas phase - A review Chem. Eng. J 334:2408–39. doi:10.1016/j.cej.2017.09.153.
  • Sun, J., Y. Hou, Z. Yun, L. Tu, Y. Yan, S. Qin, S. Chen, D. Lan, H. Zhu, and S. Wang. 2021. Visible-light-driven Z-scheme Zn3In2S6/AgBr photocatalyst for boosting simultaneous Cr(VI) reduction and metronidazole oxidation: Kinetics, degradation pathways and mechanism. J. Hazard. Mater 419:126543. doi:10.1016/j.jhazmat.2021.126543.
  • Tsang, C. H. A., K. Li, Y. Zeng, W. Zhao, T. Zhang, Y. Zhan, R. Xie, D. Y. C. Leung, and H. Huang. 2019. Titanium oxide based photocatalytic materials development and their role of in the air pollutants degradation: Overview and forecast. Environ Int 125:200–28. doi:10.1016/j.envint.2019.01.015.
  • Vodyankin, A. A., Y. A. Belik, V. I. Zaikovskii, and O. V. Vodyankina. 2021. Investigating the influence of silver state on electronic properties of Ag/Ag2O/TiO2 heterojunctions prepared by photodeposition. J. Photochem. Photobiol. A: Chem 408:113091. doi:10.1016/j.jphotochem.2020.113091.
  • Wang, X., S. Li, H. Yu, J. Yu, and S. Liu. 2011. Ag2O as a New Visible-Light Photocatalyst: Self-Stability and High Photocatalytic Activity. Chem. A Europ. J 17:7777. doi:10.1002/chem.201101032.
  • Wang, G., Q. Zhang, Q. Chen, X. Ma, Y. Xin, X. Zhu, D. Ma, C. Cui, J. Zhang, and Z. Xiao. 2019. Photocatalytic degradation performance and mechanism of dibutyl phthalate by graphene/TiO2 nanotube array photoelectrodes. Chem. Eng. J 358:1083–90. doi:10.1016/j.cej.2018.10.039.
  • Watanabe, N., S. Horikoshi, H. Kawabe, Y. Sugie, J. Zhao, and H. Hidaka. 2003. Photodegradation mechanism for biphenol A at the TiO2/H2O interfaces. Chemosphere 52:851–59. doi:10.1016/S0045-6535(02)00837-8.
  • Weiwei, L. Z., L. P. Xu, H. Wang, X. Wei, K. Yao, and S. Peng. 2022. Plasmon-mediated activation of persulfate for efficient photodegradation of ionic liquids over Ag@Pd core–shell nanocubes. Appl. Catal. B: Environ 301:120751. doi:10.1016/j.apcatb.2021.120751.
  • Weon, S., J. Kim, and W. Choi. 2018. Dual-components modified TiO2 with Pt and fluoride as deactivation-resistant photocatalyst for the degradation of volatile organic compound. Appl. Catal. B: Environ 220:1–8. doi:10.1016/j.apcatb.2017.08.036.
  • Xie, Z., Y. Feng, F. Wang, D. Chen, Q. Zhang, Y. Zeng, W. Lv, and G. Liu. 2018. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl. Catal. B: Environ 229:96–104. doi:10.1016/j.apcatb.2018.02.011.
  • You, S., Y. Hu, X. Liu, and C. Wei. 2018. Synergetic removal of Pb(II) and dibutyl phthalate mixed pollutants on Bi2O3-TiO2 composite photocatalyst under visible light, Appl. Catal. B: Environ 232:288–98. doi:10.1016/j.apcatb.2018.03.025.
  • Yu, N., H. Peng, L. Qiu, R. Wang, C. Jiang, T. Cai, Y. Sun, Y. Li, and H. Xiong. 2019. New pectin-induced green fabrication of Ag@AgCl/ZnO nanocomposites for visible light triggered antibacterial activity. Int. J. Biol. Macromol 141:207–17. doi:10.1016/j.ijbiomac.2019.08.257.
  • ZHAO, X., X. QUAN, S. CHEN, H. ZHAO, and Y. LIU. 2007. Photocatalytic remediation of γ-hexachlorocyclohexane contaminated soils using TiO2 and montmorillonite composite photocatalyst. J. Environ. Sci 19:358–61. doi:10.1016/S1001-0742(07)60059-X.
  • Zhao, W., J. Zhang, F. Zhu, F. Mu, L. Zhang, B. Dai, J. Xu, A. Zhua, C. Sun, and D. Y. C. Leung. 2019. Study the photocatalytic mechanism of the novel Ag/p-Ag2O/n-BiVO4 plasmonic photocatalyst for the simultaneous removal of BPA and chromium (VI). Chem. Eng. Journal 361:1352–62. doi:10.1016/j.cej.2018.12.181.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.