394
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Food processing by-products and wastes as potential dust suppressants at mine sites: Results from unconfined compressive strength testing

, , &
Pages 1012-1026 | Received 08 Nov 2021, Accepted 19 Apr 2022, Published online: 17 Jul 2022

References

  • Adhikari, B., T. Howes, B. R. Bhandari, and V. Truong. 2001. Stickiness in foods: A review of mechanisms and test methods. Int. J. Food. Prop. 4 (1):1–33. doi:10.1081/JFP-100002186.
  • Anal, A. K. 2017. Food processing by-products and their utilization. 1st ed. Chichester, UK: Wiley.
  • Ayeldeen, M., A. Negm, M. El Sawwaf, and T. Gädda. 2017. Laboratory study of using biopolymer to reduce wind erosion. Int. J. Geotech. Eng. 12 (3):228–40. doi:10.1080/19386362.2016.1264692.
  • Azeredo, H. M. C., and K. W. Waldron. 2016. Crosslinking in polysaccharide and protein films and coatings for food contact: A review. Trends Food Sci. Tech. 52:109–22. doi:10.1016/j.tifs.2016.04.008.
  • Blanck, G., O. Cuisinier, and F. Masrouri. 2014. Soil treatment with organic non-traditional additives for the improvement of earthworks. Acta. Geotech. 9 (6):1111–22. doi:10.1007/s11440-013-0251-6.
  • Bolander, P., and A. Yamada. 1999. Dust palliative selection and application guide. San Dimas, CA: San Dimas Technology and Development Center. 23.
  • Chang, I., J. Im, A. K. Prasidhi, and G.-C. Cho. 2015a. Effects of Xanthan gum biopolymer on soil strengthening. Constr. Build. Mater. 74:65–72. doi:10.1016/j.conbuildmat.2014.10.026.
  • Chang, I., A. K. Prasidhi, J. Im, and G.-C. Cho. 2015b. Soil strengthening using thermo-gelation biopolymers. Constr. Build. Mater. 77:430–38. doi:10.1016/j.conbuildmat.2014.12.116.
  • Chang, I., A. K. Prasidhi, J. Im, H.-D. Shin, and G.-C. Cho. 2015c. Soil treatment using microbial biopolymers for anti-desertification purposes. Geoderma 253-254:39–47. doi:10.1016/j.geoderma.2015.04.006.
  • Chang, I., J. Im, and G.-C. Cho. 2016. Geotechnical engineering behaviours of gellan gum biopolymer treated sand. Can. Geotech. J. 53 (10):1658–70. doi:10.1139/cgj-2015-0475.
  • Chang, I., J. Im, M.-K. Chung, and G.-C. Cho. 2018. Bovine casein as a new soil strengthening binder from diary wastes. Constr. Build. Mater. 160:1–9. doi:10.1016/j.conbuildmat.2017.11.009.
  • Chang, I., M. Lee, A. T. P. Tran, S. Lee, Y.-M. Kwon, J. Im, and G.-C. Cho. 2020. Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. Transp. Geotech. 24:100385. doi:10.1016/j.trgeo.2020.100385.
  • Chen, R., I. Lee, and L. Zhang. 2015. Biopolymer stabilization of mine tailings for dust control. J. Geotech. Geoenviron. Eng. 141 (2):4014100. doi:10.1061/(ASCE)GT.1943-5606.0001240.
  • Chen, R., D. Ramey, E. Weiland, I. Lee, and L. Zhang. 2016. Experimental investigation on biopolymer strengthening of mine tailings. J. Geotech. Geoenviron. Eng. 142 (12):6016017. doi:10.1061/(ASCE)GT.1943-5606.0001568.
  • Colla, G., Y. Rouphael, R. Canaguier, E. Svecova, and M. Cardarelli. 2014. Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448. doi:10.3389/fpls.2014.00448.
  • Ding, X., G. Xu, M. Kizil, W. Zhou, and X. Guo. 2018. Lignosulfonate treating bauxite residue dust pollution: Enhancement of mechanical properties and wind erosion behaviour. Water Air Soil Pollut. 229 (7):1084. doi:10.1007/s11270-018-3876-0.
  • Edvardsson, K. 2009. Gravel roads and dust suppression. Road Mater Pavement Des. 10 (3):439–69. doi:10.3166/rmpd.10.439-469.
  • Elkady, T. Y. 2015. The effect of curing conditions on the unconfined compression strength of lime-treated expansive soils. Road Mater Pavement Des. 17 (1):52–69. doi:10.1080/14680629.2015.1062409.
  • European Union. 2012. Guidance on the interpretation of key provisions of Directive 2008/98/EC on waste. Luxembourg, Luxemburg: Publications Office of the European Union.
  • European Union. 2017. Commission Regulation (EU) 2017/1017 of 15 June 2017 amending Regulation (EU) No 68/2013 on the Catalogue of feed materials: C/2017/3980. Luxembourg, Luxemburg: Publications Office of the European Union.
  • Fatehi, H., S. M. Abtahi, H. Hashemolhosseini, and S. M. Hejazi. 2018. A novel study on using protein based biopolymers in soil strengthening. Constr. Build. Mater 167:813–21. doi:10.1016/j.conbuildmat.2018.02.028.
  • Ferreira, A. R. L., L. F. Sanches Fernandes, R. M. V. Cortes, and F. A. L. Pacheco. 2017. Assessing anthropogenic impacts on riverine ecosystems using nested partial least squares regression. Sci. Total Environ. 583:466–77. doi:10.1016/j.scitotenv.2017.01.106.
  • Foley, G., S. Cropley, and G. Giummarra. 1996. Road dust control techniques: Evaluation of chemical suppressants’ performance: ARRB Transport Research Ltd, Vermont South, Victoria. 143.
  • German Institute for Standardization. 2009. DIN 19747:2009-07. Investigation of solids - pre-treatment, preparation and processing of samples for chemical, biological and physical investigations. Berlin: Beuth.
  • German Institute for Standardization. 2012a. DIN EN 15933:2012-11. Sludge, treated biowaste and soil - determination of pH. Berlin: Beuth.
  • German Institute for Standardization. 2012b. DIN 18127:2012-09. Soil, investigation and testing - Proctor-test. Berlin: Beuth.
  • German Institute for Standardization. 2017. DIN EN ISO 17892-4:2017-04. Geotechnical investigation and testing - laboratory testing of soil - part 4: Determination of particle size distribution. Berlin: Beuth.
  • German Institute for Standardization. 2018a. DIN EN ISO 14688-1:2018-05. Geotechnical investigation and testing - identification and classification of soil - part 1: Identification and description. Berlin: Beuth.
  • German Institute for Standardization. 2018b. DIN EN ISO 17892-7:2018-05. Geotechnical investigation and testing - laboratory testing of soil - part 7: Unconfined compression test. Berlin: Beuth.
  • German Institute for Standardization. 2018c. DIN EN ISO 11508:2018-04. Soil quality - determination of particle density. Berlin: Beuth.
  • Gillies, J. A., J. G. Watson, C. F. Rogers, D. DuBois, J. C. Chow, R. Langston, and J. Sweet. 1999. Long-term efficiencies of dust suppressants to reduce PM10 emissions from unpaved roads. J. Air Waste Manag. 49 (1):3–16. doi:10.1080/10473289.1999.10463779.
  • Huang, H., B. Shi, J. Liu, and H.-T. Jiang. 2008. Experimental study on application of STW ecotypic soil stabilizer in windbreak and sand fixation. Chin. J. Geotech. Eng. 30 (12):1900–04.
  • Jones, B. E. H., R. J. Haynes, and I. R. Phillips. 2010. Effect of amendment of bauxite processing sand with organic materials on its chemical, physical and microbial properties. J. Environ. Manage. 91 (11):2281–88. doi:10.1016/j.jenvman.2010.06.013.
  • Jones, D., and R. Surdahl. 2014. New procedure for selecting chemical treatments for unpaved roads. Transp. Res. Rec. 2433 (1):87–99. doi:10.3141/2433-10.
  • Jones, D. 2017. Guidelines for the selection, specification and application of chemical dust control and stabilization treatments on unpaved roads, 156. University of California Pavement Research Center. Davis, CA.
  • Khan, R. K., and M. A. Strand. 2018. Road dust and its effect on human health: A literature review. Epidemiol Health 40:e2018013. doi:10.4178/epih.e2018013.
  • Khatami, H. R., and B. C. O’Kelly. 2013. Improving mechanical properties of sand using biopolymers. J. Geotech. Geoenviron. Eng. 139 (8):87–99. doi:10.1061/(ASCE)GT.1943-5606.0000861.
  • Kume, T., N. Nagasawa, and F. Yoshii. 2002. Utilization of carbohydrates by radiation processing. Radiat. Phys. Chem. 63 (3–6):625–27. doi:10.1016/S0969-806X(01)00558-8.
  • Latifi, N., S. Horpibulsuk, C. L. Meehan, M. Z. A. Majid, and A. S. A. Rashid. 2016. Xanthan gum biopolymer: An eco-friendly additive for stabilization of tropical organic peat. Environ. Earth. Sci. 75 (9):2453. doi:10.1007/s12665-016-5643-0.
  • Laurenti, R., Å. Moberg, and Å. Stenmarck. 2017. Calculating the pre-consumer waste footprint: A screening study of 10 selected products. Waste Manag. Res. 35 (1):65–78. Stockholm, 1 online resource. doi:10.1177/0734242X16675686.
  • Mahro, B., B. Gaida, I. Schüttmann, and H. Zorn. 2015. Survey of the amount and use of biogenic residues of the German food and biotech industry. Chem. Ing. Tech. 87 (5):537–42. doi:10.1002/cite.201400023.
  • Nair, L. P., and K. Kannan. 2020. Effect of biopolymers on soil strengthening. In Advances in Computer Methods and Geomechanics. IACMAG Symposium 2019, ed. A. Prashant, A. Sachan, and C. S. Desai, vol. 2. 1st ed., 2020 65–71. Singapore: Springer Singapore.
  • Omane, D., W. V. Liu, and Y. Pourrahimian. 2017. Comparison of chemical suppressants under different atmospheric temperatures for the control of fugitive dust emission on mine hauls roads. Atmos. Pollut. Res. 9 (3):537–42. doi:10.1016/j.apr.2017.12.005.
  • Piechota, T., J. Van Ea, J. Batista, K. Stave, and D. James. 2004. United States Environmental Protection Agency. EPA 600/ R–04/031. Potential environmental impacts of dust suppressants: Avoiding another timesbeach. Las Vegas, NV: An Expert Panel Summary.
  • Proctor, R. R. 1933. Fundamental principles of soil compaction. Eng. News-Record 111 (13):245–48.
  • Pylak, M., K. Oszust, and M. Frąc. 2019. Review report on the role of bioproducts, biopreparations, biostimulants and microbial inoculants in organic production of fruit. Rev. Environ. Sci. Biotechnol. 18 (3):597–616. doi:10.1007/s11157-019-09500-5.
  • Rai, P. K. 2016. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 129:120–36. doi:10.1016/j.ecoenv.2016.03.012.
  • Reddy, N. G., R. S. Nongmaithem, D. Basu, and B. H. Rao. 2020. Application of biopolymers for improving the strength characteristics of red mud waste. Environ. Geotech. 1–20. doi:10.1680/jenge.19.00018.
  • Rushing, J. F., and J. S. Tingle. 2007. Evaluation of products and application procedures for mitigating dust in temperate climates. Transp. Res. Rec. 1989-1 (1):305–11. doi:10.3141/1989-36.
  • Singh, S. P., and R. Das. 2020. Geo-engineering properties of expansive soil treated with xanthan gum biopolymer. Geomech. Geoengin. 15 (2):107–22. doi:10.1080/17486025.2019.1632495.
  • Smith, F. W., and B. Underwood. 2000. Mine closure: The environmental challenge. Min. Technol. 109 (3):202–09. doi:10.1179/mnt.2000.109.3.202.
  • Soldo, A., M. Miletić, and M. L. Auad. 2020. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 10 (1):195. doi:10.1038/s41598-019-57135-x.
  • Stenmarck, Å., C. Jensen, T. Quested, and G. Moates. 2016. Estimates of European food waste levels: IVL Swedish Environmental Research Institute. Stockholm.
  • Thompson, R. J., and A. T. Visser. 2002. Benchmarking and management of fugitive dust emissions from surface-mine haul roads. Min. Technol. 111 (1):28–34. doi:10.1179/mnt.2002.111.1.28.
  • Thompson, R. J., and A. T. Visser. 2006. Selection and maintenance of mine haul road wearing course materials. Min. Technol. 115 (4):140–53. doi:10.1179/174328606X155138.
  • Thompson, R. J., and A. T. Visser. 2007. Selection, performance and economic evaluation of dust palliatives on surface mine haul roads. J. S. Afr. I. Min. Metall. 107:435–50.
  • Tingle, J. S., and R. L. Santoni. 2003. Stabilization of clay soils with nontraditional additives. Transp. Res. Rec. 1819 (1):72–84. doi:10.3141/1819b-10.
  • Toufigh, V., and P. Ghassemi. 2020. Control and stabilization of fugitive dust: Using eco-friendly and sustainable materials. Int. J. Geomech. 20 (9):4020140. doi:10.1061/(asce)gm.1943-5622.0001762.
  • Weiss, W. P., and N. R. St-Pierre. 2009. Impact and management of variability in feed and diet composition. In Tri-State Dairy Nutrition Conference Proceedings, Ed. 83–96. Michigan State University. Michigan State University.
  • Wilson, H. T., M. Amirkhani, and A. G. Taylor. 2018. Evaluation of gelatin as a biostimulant seed treatment to improve plant performance. Front. Plant Sci. 9:1006. doi:10.3389/fpls.2018.01006.
  • Wrolstad, R. E. 2012. Food carbohydrate chemistry. UK: Wiley. West Sussex.
  • Xu, G., X. Ding, M. Kuruppu, W. Zhou, and W. Biswas. 2018. Research and application of non-traditional chemical stabilizers on bauxite residue (red sand) dust control: A review. Sci. Total Environ. 616-617:1552–65. doi:10.1016/j.scitotenv.2017.10.158.
  • Yang, Q., C. Zheng, and J. Huang, 2018. Curing of sand stabilized with alkali lignin. In Proceedings of GeoShanghai 2018 International Conference. Ground Improvement and Geosynthetics, Ed. L. Li, B. Cetin, and X. Yang, 157–68. Singapore:Springer Singapore.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.