635
Views
2
CrossRef citations to date
0
Altmetric
Visibility 2022

The air quality of Palangka Raya, Central Kalimantan, Indonesia: The impacts of forest fires on visibility

, ORCID Icon, , , , , , & show all
Pages 1191-1200 | Received 29 Dec 2021, Accepted 05 May 2022, Published online: 10 Jun 2022

References

  • Aguilera, R., T. Corringham, A. Gershunov, and T. Benmarhnia. 2021. Wildfire smoke impacts respiratory health more than fine particles from other sources: Observational evidence from Southern California. Nat. Commun. 12 (1):1493. doi:10.1038/s41467-021-21708-0.
  • Atkinson, R. W., A. Analitis, E. Samoli, G. W. Fuller, D. C. Green, I. S. Mudway, H. R. Anderson, and F. J. Kelly. 2016. Short-term exposure to traffic related air pollution and daily mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 26 (2):125–32. doi:10.1038/jes.2015.65.
  • Awaluddin. 2016. Public health complaints due to smoke of forest and land fires in Pekanbaru city. Journal of Endurance 1(1):37–46. In Indonesian. doi:10.22216/jen.v1i1.1079.
  • Begum, B. A., S. K. Biswas, and P. K. Hopke. 2011. Key issues in controlling air pollutants in Dhaka, Bangladesh. Atmos. Environ. 45 (40):7705–13. doi:10.1016/j.atmosenv.2010.10.022.
  • Biswas, S. K., S. A. Tarafdar, A. Islam, M. Khaliquzzaman, H. Tervahattu, and K. Kupiainen. 2003. Impact of unleaded gasoline introduction on the concentration of lead in the air of Dhaka, Bangladesh. J. Air Waste Manage. Assoc. 53(11):1355–62. doi:10.1080/10473289.2003.10466299.
  • Black, C., Y. Tesfaigzi, J. A. Bassein, and L. A. Miller. 2017. Wildfire smoke exposure and human health: Significant gaps in research for a growing public health issue. Environ. Toxicol. Pharmacol. 55:186–95. doi:10.1016/j.etap.2017.08.022.
  • Bond, T. C., S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, B. J. DeAngelo, M. G. Flanner, S. Ghan, B. Kärcher, D. Koch, et al. 2013. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 118:5380–552. doi:10.1002/jgrd.50171.
  • Brauer, M., G. Freedman, J. Frostad, A. van Donkelaar, R. V. Martin, F. Dentener, R. van Dingenen, K. Estep, H. Amini, J. S. Apte, et al. 2016. Ambient air pollution exposure estimation for the global burden of disease 2013. Environ. Sci. Technol. 50 (1):79–88. doi:10.1021/acs.est.5b03709.
  • Chen, J., S. Qiu, J. Shang, O. M. F. Wilfrid, X. Liu, H. Tian, and J. Boman. 2014. Impact of relative humidity and water soluble constituents of PM2.5 on visibility impairment in Beijing, China. Aerosol Air Qual. Res. 14 (1):260–68. doi:10.4209/aaqr.2012.12.0360.
  • Cohen, D., G. Taha, E. Stelcer, D. Garton, and G. Box, 2000. The measurement and sources of fine particle elemental carbon or soot at several key sites in NSW over the past eight years. In 15th International Clean Air & Environment Conference, Sydney, Australia. Available at http://www.ansto.gov.au/ansto/environment1/iba/publications/2000-2001/pdf/cleanair2000pap.pdf.
  • Commins, B. T., and R. E. Waller. 1967. Observations from a ten-year-study of pollution at a site in the city of London. Atmos. Environ. 1 (1):49–68. doi:10.1016/0004-6981(67)90108-4.
  • Coulson, J., and J. K. Ellison. 1963. A calibration of the filter-paper method of estimation of smoke. Br. J. Appl. Phys. 14 (12):899–903. doi:10.1088/0508-3443/14/12/317.
  • Djarum, D. H., Z. Ahmad, and J. Zhang. 2021. Comparing different pre-processing techniques and machine learning models to predict PM10 and PM2.5 concentration in Malaysia. Proceedings of the 3rd International Conference on Separation Technology, Johor, Malaysia. pp.353–74. doi: 10.1007/978-981-16-0742-4_25.
  • Finlay, S. E., A. Moffat, R. Gazzard, D. Baker, and V. Murray. 2012. Health impacts of wildfires. PLoS Curr. 4:e4f959951cce2c. doi:10.1371/4f959951cce2c.
  • Fujii, Y., S. Tohno, N. Amil, and M. T. Latif. 2017. Quantitative assessment of source contributions to PM2.5 on the west coast of Peninsular Malaysia to determine the burden of Indonesian peatland fire. Atmos. Environ. 171:111–17. doi:10.1016/j.atmosenv.2017.10.009.
  • Hooijer, A., M. Silvius, H. Wösten, and S. Page. 2006. PEAT-CO2: Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics Report Q3943:1–36.
  • Hopke, P. K., Y. Xie, T. Raunemaa, S. Biegalski, S. Landsberger, W. Maenhaut, and P. C. D. Artaxo. 1997. Characterization of the gent stacked filter unit PM10 sampler. Aerosol Sci. Technol 27 (6):726–35. doi:10.1080/02786829708965507.
  • Indrawati, A., D. F. Andarini, N. Cholianawati, and Sumaryati. 2021. Analysis PM10 and visibility during forest fire in Palangka Raya. IOP Conf. Series:Environ. Earth Sci. 893:012002. doi:10.1088/1755-1315/893/1/012002.
  • Kusumaningtyas, S. D. A., and E. Aldrian. 2016. Impact of the June 2013 Riau Province sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11 (7):075007. doi:10.1088/1748-9326/11/7/075007.
  • Latif, M. T., M. Othman, N. Idris, L. Juneng, A. M. Abdullah, W. P. Hamzah, M. F. Khan, N. M. Nik Sulaiman, J. Jewaratnam, N. Aghamohammadi, et al. 2018. Impact of regional haze towards air quality in Malaysia: A review. Atmos. Environ. 177:28–44. doi:10.1016/j.atmosenv.2018.01.002.
  • Lelieveld, J., K. Klingmüller, A. Pozzer, U. Pöschl, M. Fnais, A. Daiber, and T. Münzel. 2019. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J 40 (20):1590–96. doi:10.1093/eurheartj/ehz135.
  • Lestiani, D. D., M. Santoso, and A. Hidayat. 2008. Characteristic of black carbon in fine particulate matter at Bandung and Lembang sites 2004-2005. Indonesian J. Nuclear Sci. Technol. IX (2):89–94. Agustus 2008 in Indonesian
  • Liang, F., X. Yang, F. Liu, J. Li, Q. Xiao, J. Chen, X. Liu, J. Cao, C. Shen, L. Yu, et al. 2019. Long-term exposure to ambient fine particulate matter and incidence of diabetes in China: A cohort study. Environ. Int. 126:568–75. doi:10.1016/j.envint.2019.02.069.
  • Liu, J., E. Chen, Q. Zhang, P. Shi, Y. Gao, Y. Chen, W. Liu, Y. Qin, Y. Shen, and C. Shi. 2020. The correlation between atmospheric visibility and influenza in Wuxi city, China. Medicine 99 (32):e21469. doi:10.1097/MD.0000000000021469.
  • Luan, T., X. Guo, L. Guo, and T. Zhang. 2018. Quantifying the relationship between PM2.5 concentration, visibility and planetary boundary layer height for long-lasting haze and fog–haze mixed events in Beijing. Atmos. Chem. Phys. 18 (1):203–25. doi:10.5194/acp-18-203-2018.
  • Ma, N., C. S. Zhao, J. Chen, W. Y. Xu, P. Yan, and X. J. Zhou. 2014. A novel method for distinguishing fog and haze based on PM2.5, visibility, and relative humidity. Sci. China. Earth. Sci. 57 (9):2156–64. doi:10.1007/s11430-014-4885-5.
  • Maynard, D., B. A. Coull, A. Gryparis, and J. Schwartz. 2007. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ. Health Perspect. 115 (5):751–55. doi:10.1289/ehp.9537.
  • Permadi, D. A., and N. T. Kim Oanh. 2013. Assessment of biomass open burning emissions in Indonesia and potential climate forcing impact. Atmos. Environ. 78:250–58. doi:10.1016/j.atmosenv.2012.10.016.
  • Pribadi, A., and G. Kurata. 2017. Greenhouse gas and air pollutant emissions from land and forest fire in Indonesia during 2015 based on satellite data. IOP Conf. Ser: Earth Environ. Sci. 54:012060. doi:10.1088/1755-1315/54/1/012060.
  • Pui, D. Y. H., S.-C. Chen, and Z. Zuo. 2014. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 13 (1):1–26. doi:10.1016/j.partic.2013.11.001.
  • Salako, G. O., P. K. Hopke, D. D. Cohen, B. A. Begum, S. K. Biswas, G. G. Pandit, Y. S. Chung, S. Abd Rahman, M. S. Hamzah, P. Davy, et al. 2012. Exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual. Res 12 (1):1–7. doi:10.4209/aaqr.2011.09.0150.
  • Santoso, M., D. D. Lestiani, E. Damastuti, S. Kurniawati, I. Kusmartini, D. P. D. Atmodjo, D. K. Sari, Tamrin, D. A. Permadi, and P. K. Hopke. 2020a. Long term characteristics of atmospheric particulate matter and compositions in Jakarta, Indonesia. Atmos. Pollut. Res 11 (12):2215–25. doi:10.1016/j.apr.2020.09.006.
  • Santoso, M., D. D. Lestiani, S. Kurniawati, E. Damastuti, I. Kusmartini, D. P. D. Atmodjo, D. K. Sari, P. K. Hopke, R. Mukhtar, T. Muhtarom, et al. 2020b. Assessment of urban air quality in Indonesia. Aerosol Air Qual. Res. 20:2142–58. doi:10.4209/aaqr.2019.09.0451.
  • Schneidemesser, E., P. S. Monks, J. D. Allan, L. Bruhwiler, P. Forster, D. Fowler, A. Lauer, W. T. Morgan, P. Paasonen, M. Righi, et al. 2015. Chemistry and the linkages between air quality and climate change. Chem. Rev. 115 (10):3856–97. doi:10.1021/acs.chemrev.5b00089.
  • Schweizer, D., R. Cisneros, and M. Buhler. 2019. Coarse and fine particulate matter components of wildland fire smoke at Devils Postpile National Monument, California, USA. Aerosol Air Qual. Res. 19 (7):1463–70. doi:10.4209/aaqr.2019.04.0219.
  • Seneviratne, M. C. S., V. A. Waduge, L. Hadagiripathira, S. Sanjeewani, T. Attanayake, N. Jayaratne, and P. K. Hopke. 2011. Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmos. Pollut. Res. 2 (2):207–12. doi:10.5094/APR.2011.026.
  • Sharma, R., and R. Balasuramanian. 2018. Size-fractionated particulate matter in indoor and outdoor environments during the 2015 Haze in Singapore: Potential human health risk assessment. Aerosol Air Qual. Res. 18:904–17. doi:10.4209/aaqr.2017.11.0515.
  • Sulong, N. A., M. T. Latif, M. F. Khan, N. Amil, M. J. Ashfold, M. I. A. Wahab, K. M. Chan, and M. Sahani. 2017. Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia. Sci. Total. Environ. 601–602:556–70. doi:10.1016/j.scitotenv.2017.05.153.
  • Sumaryati, S., N. Cholianawati, and A. Indrawati. 2019. The impact of forest fire on air-quality and visibility in Palangka Raya. J. Phys: Theor. Appl. 3 (1):16–26. doi:10.20961/jphystheor-appl.v3i1.38071.
  • Susetyo, K. E., K. Kusin, Y. Nina, Y. Jagau, M. Kawasaki, and D. Naito. Peatland and forest fires in Central Kalimantan, Indonesia, newsletter of tropical peatland society project. 2019, 2020. Res. Inst. Humanit. 8. https://www.chikyu.ac.jp/peatlands/img/newsletter/vol8.pdf 10 March 2020.
  • Susilo, G. E., K. Yamamoto, T. Imai, Y. Ishii, H. Fukami, and M. Sekine. 2013. The effect of ENSO on rainfall characteristics in the tropical peatland areas of Central Kalimantan, Indonesia. Hydrol. Sci. J. 58 (3):539–48. doi:10.1080/02626667.2013.772298.
  • Taha, G., G. P. Box, D. D. Cohen, and E. Stelcer. 2007. Black carbon measurement using laser integrating plate method. Aerosol Sci. Technol. 41 (3):266–76. doi:10.1080/02786820601156224.
  • Viecco, M., S. Vera, H. Jorquera, W. Bustamante, J. Gironas, C. Dobbs, and E. Leiva. 2018. Potential of particle matter dry deposition on green roofs and living walls vegetation for mitigating urban atmospheric pollution in semiarid climates. Sustainability 10 (7):2431. doi:10.3390/su10072431.
  • Wang, K., R. E. Dickinson, and S. Liang. 2009. Clear sky visibility has decreased over land globally from 1973 to 2007. Science 323 (5920):1468–70. doi:10.1126/science.1167549.
  • Wen, Y. S., A. Fauzan, N. Nabila, and Z. Sulaiman. 2016. Transboundary air pollution in Malaysia: Impact and perspective on haze. Nova Journal of J. Eng. Appl. Sci 5 (1):1–11. doi:10.20286/nova-jeas-050103.
  • World Health Organization (WHO). 2021. WHO global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 273. Geneva: World Health Organization.
  • Wu, X., J. Xin, X. Zhang, K. Schaefer, Y. Wang, L. Wang, T. Wen, Z. Liu, R. Si, G. Liu, et al. 2020. A new approach of the normalization relationship between PM2.5 and visibility and the theoretical threshold, a case in north China. Atmos. Res. 245:105054. doi:10.1016/j.atmosres.2020.105054.
  • Yin, P., M. Brauer, A. Cohen, R. T. Burnett, J. Liu, Y. Liu, R. Liang, W. Wang, J. Qi, L. Wang, et al. 2017. Long-term fine particulate matter exposure and nonaccidental and cause-specific mortality in a large national cohort of Chinese men. Environmental Health Perspectives 125 (11):117002. doi:10.1289/EHP1673.
  • Yulianti, N., K. Kusin, D. Naito, M. Kawasaki, O. Kozan, and K. E. Susetyo. 2020. The linkage of el niño-induced peat fires and its relation to current haze condition in Central Kalimantan. Journal of Wetl. Ecol. Manag. 8 (2):100–16. doi:10.20527/jwem.v8i2.221.
  • Zhao, H., H. Che, X. Zhang, Y. Ma, Y. Wang, H. Wang, and Y. Wang. 2013. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos Pollut Res. 4 (4):427–34. doi:10.5094/APR.2013.049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.