1,888
Views
1
CrossRef citations to date
0
Altmetric
Visibility 2022

Evaluation of a new low-cost particle sensor as an internet-of-things device for outdoor air quality monitoring

, , , , , , & ORCID Icon show all
Pages 1219-1230 | Received 15 Dec 2021, Accepted 15 Jun 2022, Published online: 01 Nov 2022

References

  • Astudillo, G. D., L. E. Garza-Castanon, and L. I. M. Avila. 2020. Design and evaluation of a reliable low-cost atmospheric pollution station in urban environment. IEEE Access. 8:51129–44. doi:10.1109/access.2020.2980736.
  • Báthory, C., M. L. Kiss, A. Trohák, Z. Dobó, and Á. B. Palotás. 2019. Preliminary research for low-cost particulate matter sensor network. E3S Web Conf. 100:00004. doi:10.1051/e3sconf/201910000004.
  • Bauerová, P., A. Šindelářová, Š. Rychlík, Z. Novák, and J. Keder. 2020. Low-cost air quality sensors: One-year field comparative measurement of different gas sensors and particle counters with reference monitors at Tušimice observatory. Atmosphere 11 (5):492. doi:10.3390/atmos11050492.
  • Cavaliere, A., F. Carotenuto, F. D. Gennaro, B. Gioli, G. Gualtieri, F. Martelli, A. Matese, P. Toscano, C. Vagnoli, and A. Zaldei. 2018. Development of low-cost air quality stations for next generation monitoring networks: Calibration and validation of PM2.5 and PM10 sensors. Sensors 18 (9):2843. doi:10.3390/s18092843.
  • Cho, E.-M., H. J. Jeon, D. K. Yoon, S. H. Park, H. J. Hong, K. Y. Choi, H. W. Cho, H. C. Cheon, and C. M. Lee. 2019. Reliability of low-cost, sensor-based fine dust measurement devices for monitoring atmospheric particulate matter concentrations. Int. J. Environ. Res. Public Health 16 (8):1430. doi:10.3390/ijerph16081430.
  • Clements, A. L., S. Reece, T. Conner, and R. Williams. 2019. Observed data quality concerns involving low-cost air sensors. Atmos. Environ. X 3:100034. doi:10.1016/j.aeaoa.2019.100034.
  • Commodore, S., A. Metcalf, C. Post, K. Watts, S. Reynolds, and J. Pearce. 2020. A statistical calibration framework for improving non-reference method particulate matter reporting: A focus on community air monitoring settings. Atmosphere 11 (8):807. doi:10.3390/atmos11080807.
  • Demanega, I., I. Mujan, B. C. Singer, A. S. Anđelković, F. Babich, and D. Licina. 2021. Performance assessment of low-cost environmental monitors and single sensors under variable indoor air quality and thermal conditions. Build. Environ. 187:107415. doi:10.1016/j.buildenv.2020.107415.
  • Feenstra, B., V. Papapostolou, S. Hasheminassab, H. Zhang, B. D. Boghossian, D. Cocker, and A. Polidori. 2019. Performance evaluation of twelve low-cost PM2.5 sensors at an ambient air monitoring site. Atmos. Environ. 216:116946. doi:10.1016/j.atmosenv.2019.116946.
  • Gao, M., J. Cao, and E. Seto. 2015. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of PM2.5 in Xi’an, China. Environ. Pollut. 199:56–65. doi:10.1016/j.envpol.2015.01.013.
  • Jayaratne, R., X. Liu, K.-H. Ahn, A. Asumadu-Sakyi, G. Fisher, J. Gao, A. Mabon, M. Mazaheri, B. Mullins, M. Nyaku, et al. 2020. Low-cost PM2.5 sensors: An assessment of their suitability for various applications. Aerosol Air Qual. Res. doi:10.4209/aaqr.2018.10.0390.
  • Jiang, H., H. Xiao, H. Song, J. Liu, T. Wang, H. Cheng, and Z. Wang. 2020. A long-lasting winter haze episode in Xiangyang, central China: Pollution characteristics, chemical composition, and health risk assessment. Aerosol Air Qual. Res. 20 (12):2859–73. doi:10.4209/aaqr.2020.02.0068.
  • Jiao, W., G. Hagler, R. Williams, R. Sharpe, R. Brown, D. Garver, R. Judge, M. Caudill, J. Rickard, M. Davis, et al. 2016. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Tech. 9 (11):5281–92. doi:10.5194/amt-9-5281-2016.
  • Karagulian, F., M. Barbiere, A. Kotsev, L. Spinelle, M. Gerboles, F. Lagler, N. Redon, S. Crunaire, and A. Borowiak. 2019. Review of the performance of low-cost sensors for air quality monitoring. Atmosphere 10 (9):506. doi:10.3390/atmos10090506.
  • Kelly, K. E., J. Whitaker, A. Petty, C. Widmer, A. Dybwad, D. Sleeth, R. Martin, and A. Butterfield. 2017. Ambient and laboratory evaluation of a low-cost particulate matter sensor. Environ. Pollut. 221:491–500. doi:10.1016/j.envpol.2016.12.039.
  • Kuula, J., T. Mäkelä, M. Aurela, K. Teinilä, S. Varjonen, Ó. González, and H. Timonen. 2020. Laboratory evaluation of particle-size selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 13 (5):2413–23. doi:10.5194/amt-13-2413-2020.
  • Lehmann, K., A. Minhans, M. K. Fajari, and M. Hahn. 2019. Assessment of low-cost particulate matter sensors. ISPRS Int. Arch. Remote Sens. Spatial Inf. Sci. XLII-4/W18:671–77. doi:10.5194/isprs-archives-xlii-4-w18-671-2019.
  • Li, J., S. K. Mattewal, S. Patel, and P. Biswas. 2020. Evaluation of nine low-cost-sensor-based particulate matter monitors. Aerosol Air Qual. Res. 20 (2):254–70. doi:10.4209/aaqr.2018.12.0485.
  • Lim, C.-H., J. Ryu, Y. Choi, S. W. Jeon, and W.-K. Lee. 2020. Understanding global PM2.5 concentrations and their drivers in recent decades (1998–2016). Environ. Int. 144:106011. doi:10.1016/j.envint.2020.106011.
  • Liu, J. C., A. Wilson, L. J. Mickley, F. Dominici, K. Ebisu, Y. Wang, M. P. Sulprizio, R. D. Peng, X. Yue, J.-Y. Son, et al. 2017. Wildfire-specific fine particulate matter and risk of hospital admissions in urban and rural counties. Epidemiology 28 (1):77–85. doi:10.1097/ede.0000000000000556.
  • Liu, X., R. Jayaratne, P. Thai, T. Kuhn, I. Zing, B. Christensen, R. Lamont, M. Dunbabin, S. Zhu, J. Gao, et al. 2020. Low-cost sensors as an alternative for long-term air quality monitoring. Environ. Res. 185:109438. doi:10.1016/j.envres.2020.109438.
  • Motlagh, N. H., M. A. Zaidan, P. L. Fung, E. Lagerspetz, K. Aula, S. Varjonen, M. Siekkinen, A. Rebeiro-Hargrave, T. Petäjä, Y. Matsumi, et al. 2021. Transit pollution exposure monitoring using low-cost wearable sensors. Transp. Res. Part D 98:102981. doi:10.1016/j.trd.2021.102981.
  • Mukherjee, A., L. Stanton, A. Graham, and P. Roberts. 2017. Assessing the utility of low-cost particulate matter sensors over a 12-week period in the Cuyama Valley of California. Sensors 17 (8):1805. doi:10.3390/s17081805.
  • Post, C. J., M. P. Cope, P. D. Gerard, N. M. Masto, J. R. Vine, R. Y. Stiglitz, J. O. Hallstrom, J. C. Newman, and E. A. Mikhailova. 2018. Monitoring spatial and temporal variation of dissolved oxygen and water temperature in the Savannah River using a sensor network. Environ. Monit. Assess. 190 (5):272. doi:10.1007/s10661-018-6646-y.
  • Post, C. J., E. A. Mikhailova, J. L. Sharp, A. H. Nelson, M. P. Cope, J. O. Hallstrom, and R. D. Chandler. 2019. Detecting river-scale turbidity disturbance after rainfall using NEXt-Generation Weather RADar (NEXRAD) and the Intelligent River. J. Soil Water Conserv. 74 (2):101–10. doi:10.2489/jswc.74.2.101.
  • Qin, X., L. Hou, J. Gao, and S. Si. 2020. The evaluation and optimization of calibration methods for low-cost particulate matter sensors: Inter-comparison between fixed and mobile methods. Sci. Total Environ. 715:136791. doi:10.1016/j.scitotenv.2020.136791.
  • SC DHEC. 2020. State of South Carolina, annual ambient air monitoring network plan, July 1, 2020 - December 31, 2021. Bureau of Air Quality, South Carolina Department of Health & Environmental Control.
  • US EPA. 2006. Electronic code of federal regulations (eCFR).
  • US EPA. 2009. Quality assurance project plan for the federal PM2.5 performance evaluation program.
  • US EPA. 2020. Air quality system data mart air quality statistics report. Accessed June 18, 2020. https://www.epa.gov/airdata
  • Zamora, M. L., F. Xiong, D. Gentner, B. Kerkez, J. Kohrman-Glaser, and K. Koehler. 2018. Field and laboratory evaluations of the low-cost plantower particulate matter sensor. Environ. Sci. Technol. 53 (2):838–49. doi:10.1021/acs.est.8b05174.
  • Zheng, T., M. H. Bergin, K. K. Johnson, S. N. Tripathi, S. Shirodkar, M. S. Landis, R. Sutaria, and D. E. Carlson. 2018. Field evaluation of low-cost particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 11 (8):4823–46. doi:10.5194/amt-11-4823-2018.