424
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Effects of adding biochar on the preservation of nitrogen and passivation of heavy metal during hyperthermophilic composting of sewage sludge

, , , , , , , & show all
Pages 15-24 | Received 08 Oct 2021, Accepted 04 Feb 2022, Published online: 07 Sep 2022

References

  • Cáceres, R., A. Magrí, and O. Marfà. 2015. Nitrification of leachates from manure composting under field conditions and their use in horticulture. Waste Manage 44:72–81. doi:10.1016/j.wasman.2015.07.039.
  • Chan, M. T., A. Selvam, and J. W. C. Wong. 2016. Reducing nitrogen loss and salinity during ‘struvite’ food waste composting by zeolite amendment. Bioresour. Technol 200:838–44. doi:10.1016/j.biortech.2015.10.093.
  • Chang, R., Y. Li, Q. Chen, Q. Guo, and J. Jia. 2019. Comparing the effects of three in situ methods on nitrogen loss control, temperature dynamics and maturity during composting of agricultural wastes with a stage of temperatures over 70 degrees C. J. Environ. Manage 230:119–27. doi:10.1016/j.jenvman.2018.09.076.
  • Cheng, Y., R. Inamori, K. Ruike, Y. Inamori, and Z. Zhang. 2018. Optimum dosage of hyper-thermophilic aerobic compost (HTAC) produced from sewage sludge for rice yield. Int. J. Biol 10 (3):27. doi:10.5539/ijb.v10n3p27.
  • Courtens, E. N. P., E. Spieck, R. Vilchez-Vargas, S. Bodé, P. Boeckx, S. Schouten, R. Jauregui, D. H. Pieper, S. E. Vlaeminck, and N. Boon. 2016. A robust nitrifying community in a bioreactor at 50 °C opens up the path for thermophilic nitrogen removal. ISME J 10 (9):2293–303. doi:10.1038/ismej.2016.8.
  • Cui, P., H. Liao, Y. Bai, X. Li, S. Zhou, Z. Chen, Z. Yu, Z. Yi, and S. Zhou. 2019a. Hyperthermophilic composting reduces nitrogen loss via inhibiting ammonifiers and enhancing nitrogenous humic substance formation. Sci. Total Environ 692:98–106. doi:10.1016/j.scitotenv.2019.07.239.
  • Cui, P., Z. Chen, Q. Zhao, Z. Yu, Z. Yi, H. Liao, and S. Zhou. 2019b. Hyperthermophilic composting significantly decreases N2O emissions by regulating N2O-related functional genes. Bioresour. Technol 272:433–41. doi:10.1016/j.biortech.2018.10.044.
  • Gao, X., W. Tan, Y. Zhao, J. Wu, Q. Sun, H. Qi, X. Xie, and Z. Wei. 2019. Diversity in the mechanisms of humin formation during composting with different materials. Environ. Sci. Technol 53 (7):3653–62. doi:10.1021/acs.est.8b06401.
  • Guo, J., F. Fang, P. Yan, and Y. Chen. 2020a. Sludge reduction based on microbial metabolism for sustainable wastewater treatment. Bioresour. Technol 297:122506. doi:10.1016/j.biortech.2019.122506.
  • Guo, X. X., H. T. Liu, and J. Zhang. 2020b. The role of biochar in organic waste composting and soil improvement: A review. Waste Manage 102:884–99. doi:10.1016/j.wasman.2019.12.003.
  • Jain, M. S., S. Paul, and A. S. Kalamdhad. 2019. Utilization of biochar as an amendment during lignocellulose waste composting: Impact on composting physics and realization (probability) amongst physical properties. Process Saf. Environ 121:229–38. doi:10.1016/j.psep.2018.10.031.
  • Jiang, J. S., X. L. Liu, Y. M. Huang, and H. Huang. 2015. Inoculation with nitrogen turnover bacterial agent appropriately increasing nitrogen and promoting maturity in pig manure composting. Waste Manage 39:78–85. doi:10.1016/j.wasman.2015.02.025.
  • Koyama, M., N. Nagao, F. Syukri, A. Abd Rahim, T. Toda, Q. N. M. Tran, and K. Nakasaki. 2020. Ammonia recovery and microbial community succession during thermophilic composting of shrimp pond sludge at different sludge properties. J. Clean. Prod 251:119718. doi:10.1016/j.jclepro.2019.119718.
  • Li, F., S. Cheng, H. Yu, and D. Yang. 2016. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J. Clean. Prod 126:451–60. doi:10.1016/j.jclepro.2016.02.104.
  • Li, X., L. Chen, Q. Mei, B. Dong, X. Dai, G. Ding, and E. Y. Zeng. 2018. Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res 142:75–85. doi:10.1016/j.watres.2018.05.034.
  • Li, J., and N. Song. 2020. Graphene oxide-induced variations in the processing performance, microbial community dynamics and heavy metal speciation during pig manure composting. Process Saf. Environ 136:214–22. doi:10.1016/j.psep.2020.01.028.
  • Liao, H., X. Lu, C. Rensing, V. P. Friman, S. Geisen, Z. Chen, Z. Yu, Z. Wei, S. Zhou, and Y. Zhu. 2017. Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environ. Sci. Technol 52 (1):266–76. doi:10.1021/acs.est.7b04483.
  • Liu, W., R. Huo, J. Xu, S. Liang, J. Li, T. Zhao, and S. Wang. 2017. Effects of biochar on nitrogen transformation and heavy metals in sludge composting. Bioresour. Technol 235:43–49. doi:10.1016/j.biortech.2017.03.052.
  • Liu, X., Y. Hou, Z. Li, Z. Yu, S. Zhou, Y. Wang, and S. Zhou. 2020. Hyperthermophilic composting of sewage sludge accelerates humic acid formation: Elemental and spectroscopic evidence. Waste Manage 103:342–51. doi:10.1016/j.wasman.2019.12.053.
  • Ma, C., B. Hu, M. Wei, J. Zhao, and H. Zhang. 2019. Influence of matured compost inoculation on sewage sludge composting: Enzyme activity, bacterial and fungal community succession. Bioresour. Technol 294:122165. doi:10.1016/j.biortech.2019.122165.
  • Meng, L., S. Zhang, H. Gong, X. Zhang, C. Wu, and W. Li. 2018. Improving sewage sludge composting by addition of spent mushroom substrate and sucrose. Bioresour. Technol 253:197–203.
  • Mulchandani, A., and P. Westerhoff. 2016. Recovery opportunities for metals and energy from sewage sludges. Bioresour. Technol 215:215–26. doi:10.1016/j.biortech.2016.03.075.
  • Nguyen, T. B., and K. Shima. 2019. Composting of sewage sludge with a simple aeration method and its utilization as a soil fertilizer. Environ. Manage 63 (4):455–65. doi:10.1007/s00267-017-0963-8.
  • Robledo-Mahón, T., M. A. Martín, M. C. Gutiérrez, M. Toledo, I. González, E. Aranda, A. F. Chica, and C. Calvo. 2019. Sewage sludge composting under semi-permeable film at full-scale: Evaluation of odour emissions and relationships between microbiological activities and physico-chemical variables. Environ. Res 177:108624. doi:10.1016/j.envres.2019.108624.
  • Singh, P., R. Singh, A. Borthakur, S. Madhav, V. K. Singh, D. Tiwary, and P. K. Mishra. 2018. Exploring temple floral refuse for biochar production as a closed loop perspective for environmental management. Waste Manage 77:78–86. doi:10.1016/j.wasman.2018.04.041.
  • Wang, W., W. Liu, and L. Wang. 2015. Characteristics research on sewage sludge under thin-layered hot-press treatment. Desalin. Water Treat 57 (44):1–7.
  • Wang, X., G. Zheng, T. Chen, X. Shi, Y. Wang, E. Nie, and J. Liu. 2019. Effect of phosphate amendments on improving the fertilizer efficiency and reducing the mobility of heavy metals during sewage sludge composting. J. Environ. Manage 235:124–32. doi:10.1016/j.jenvman.2019.01.048.
  • Wang, X., T. Chen, and G. Zheng. 2020a. Perlite as the partial substitute for organic bulking agent during sewage sludge composting. Environ. Geochem. Hlth 42 (3):1517–29. doi:10.1007/s10653-019-00353-z.
  • Wang, X., G. Zheng, T. Chen, E. Nie, X. Wang, T. Chen, and G. Zheng. 2020b. Preservation of nitrogen and sulfur and passivation of heavy metals during sewage sludge composting with KH2PO4 and FeSO4. Bioresour. Technol 297:122383. doi:10.1016/j.biortech.2019.122383.
  • Wang, Z. Q., D. Y. Wu, Y. Lin, and X. Z. Wang. 2021a. Role of temperature in sludge composting and hyperthermophilic systems: A review. Bioenerg. Res doi:10.1007/s12155-021-10281-5.
  • Wang, S., L. Wang, Z. Sun, S. Wang, C. Shen, Y. Tang, and K. Kida. 2021b. Biochar addition reduces nitrogen loss and accelerates composting process by affecting the core microbial community during distilled grain waste composting. Bioresour. Technol 337:125492. doi:10.1016/j.biortech.2021.125492.
  • Xu, Z., X. Zhang, J. Zhou, and L. Xiang. 2018. Technical review of dewatering process for excess sludge of municipal sewage plant. Water Purif. Technol 37 (2):38–44.
  • Yang, X., S. Zhang, M. Ju, and L. Liu. 2019. Preparation and modification of biochar materials and their application in soil remediation. Appl. Sci 9 (7):1365. doi:10.3390/app9071365.
  • Yu, Z., J. Tang, H. Liao, X. Liu, P. Zhou, Z. Chen, C. Rensing, and S. Zhou. 2018. The distinctive microbial community improves composting efficiency in a full-scale hyperthermophilic composting plant. Bioresour. Technol 265:146–54. doi:10.1016/j.biortech.2018.06.011.
  • Yu, Z., X. Liu, M. Zhao, W. Zhao, J. Liu, J. Tang, H. Liao, Z. Chen, and S. Zhou. 2019. Hyperthermophilic composting accelerates the humification process of sewage sludge: Molecular characterization of dissolved organic matter using EEM–PARAFAC and two-dimensional correlation spectroscopy. Bioresour. Technol 274:198–206. doi:10.1016/j.biortech.2018.11.084.
  • Zhang, F., Z. Wei, and J. J. Wang. 2021. Integrated application effects of biochar and plant residue on ammonia loss, heavy metal immobilization, and estrogen dissipation during the composting of poultry manure. Waste Manage 131 (7):117–25. doi:10.1016/j.wasman.2021.05.037.
  • Zhao, Y., W. Li, L. Chen, L. Meng, and Z. Zheng. 2020. Effect of enriched thermotolerant nitrifying bacteria inoculation on reducing nitrogen loss during sewage sludge composting. Bioresour. Technol 311:123461. doi:10.1016/j.biortech.2020.123461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.