1,348
Views
1
CrossRef citations to date
0
Altmetric
Review Paper

Analysis and discussion on formation and control of dioxins generated from municipal solid waste incineration process

, &
Pages 1063-1082 | Received 29 Dec 2021, Accepted 22 Jun 2022, Published online: 05 Aug 2022

References

  • Abad, E., M. A. Adrados, J. Caixach, B. Fabrellas, and J. Rivera. 2000. Dioxin mass balance in a municipal waste incinerator[J]. Chemosphere 40 (9–11):1143–47. doi:10.1016/S0045-6535(99)00363-X.
  • Addink, R., F. Espourteille, and E. R. Altwicker. 1998. Role of inorganic chlorine in the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans from residual carbon on incinerator fly ash[J]. Environ. Sci. Technol 32 (21):3356–59. doi:10.1021/es971080i.
  • Agon, N., M. Hrabovsky, O. Chumak, M. Hlina, V. Kopecky, A. Maslani, A. Bosmans, L. Helsen, S. Skoblja, and G. V. Oost. 2016. Plasma gasification of refuse derived fuel in a single-stage system using different gasifying agents[J]. Waste Manag 47. doi:10.1016/j.wasman.2015.07.014.
  • Akki, U. 1998. Gas phase formation pathways and mechanisms of polychlorinated dibenzo-p-dioxins and dibenzofurans[J]. Atlanta: Georgia institute of technology.
  • Anasonye, F., E. Winquist, B. Kluczek-Turpeinen, M. Raesaenen, K. Salonen, K. T. Steffen, and M. Tuomela. 2014. Fungal enzyme production and biodegradation of polychlorinated dibenzo-p-dioxins and dibenzofurans in contaminated sawmill soil[J]. Chemosphere 110:85–90. doi:10.1016/j.chemosphere.2014.03.079.
  • Babushok, V. I., and W. Tsang. 2003. Gas-phase mechanism for dioxin formation[J]. Chemosphere 51 (10):1023–29. doi:10.1016/S0045-6535(02)00716-6.
  • Binh, N. D., N. Oanh, and P. Parisian. 2014. Photodegradation of dioxin in contaminated soil in the presence of solvents and nanoscale TiO 2 particles. Environ Technol 35 (9):1121–32. doi:10.1080/09593330.2013.861873.
  • Chang, M. B., and Y. T. Chung. 1998. Dioxin contents in fly ashes of MSW incineration in Taiwan[J]. Chemosphere 36 (9):1959–68. doi:10.1016/S0045-6535(97)10080-7.
  • Chang, M. B., and T. F. Huang. 2000. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash[J]. Chemosphere 40 (2):159–64. doi:10.1016/S0045-6535(99)00227-1.
  • Chang, M. B., Y. C. Cheng, and K. H. Chi. 2006. Reducing PCDD/F formation by adding sulfur as inhibitor in waste incineration processes[J]. Sci. Total Environ 366 (2–3):456–65. doi:10.1016/j.scitotenv.2005.04.047.
  • Chang, Y. M., C. Y. Hung, J. H. Chen, C. T. Chang, and C. H. Chen. 2009. Minimum feeding rate of activated carbon to control dioxin emissions from a large-scale municipal solid waste incinerator[J]. J. Hazard. Mater 161 (2–3):1436–43. doi:10.1016/j.jhazmat.2008.04.128.
  • Chen, T., X. Dong, J. Yan, S. Lu, Y. Jin, and K. Cen. 2004. Distribution characteristics of dioxins in fly ash of waste incinerator[J]. J. Fuel Chem 32 (1):59–64. CNKI:SUN:RLHX.0.2004-01-012.
  • Chen, T. 2006. Study on formation mechanism and control technology of dioxins in municipal solid waste incineration process[D]. City: Zhejiang university.
  • Chen, T., J. Yan, S. Lu, X. Li, K. Qiu, and K. Cen. 2007. Characteristics of fly ash and effect of chlorine on de novo synthesis mechanism of dioxins[J]. Proc. CSEE 27 (11):27–32. doi:10.3321/j.0258-8013.2007.11.006.
  • Dontriros, S., S. Likitlersuang, and D. Janjaroen. 2020. Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions[J]. Waste Manag 101:44–53. doi:10.1016/j.wasman.2019.09.033.
  • Du, Q., H. Dong, D. Lv, L. Su, J. Gao, Z. Zhao, and M. Wang. 2018. Field measurements on the generation and emission characteristics of PM2.5 generated by utility pulverized coal boiler[J]. J. Energy Inst 91 (6):1009–20. doi:10.1016/j.joei.2017.07.007.
  • Dvo?Ák, R., P. Chlápek, D. Jecha, R. Puchy, and P. Stehlík. 2010. New approach to common removal of dioxins and NOx as a contribution to environmental protection[J]. J. Clean. Prod 18 (9):881–88. doi:10.1016/j.jclepro.2010.01.024.
  • El-Shahawi, M. S., A. Hamza, A. S. Bashammakh, and W. T. Al-Saggaf. 2010. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants[J]. Talanta 80 (5):1587–97. doi:10.1016/j.talanta.2009.09.055.
  • Faitli, J., S. Nagy, R. Romenda, I. Gombkoto, L. Bokanyi, and L. Barna. 2019. Assessment of a residual municipal solid waste landfill for prospective ‘landfill mining’[J]. Waste Manag Res 37 (12):1229–39. doi:10.1177/0734242X19881197.
  • Fang, D., and K. Li. 2019. Progress of municipal solid waste incineration power generation technology at home and abroad[J]. Power Gener. Technol 40 (4):10. doi:10.12096/j.2096-4528.pgt.18234.
  • Fernandez Pulido, Y., E. Suarez, R. Lopez, and M. I. Menendez. 2016. The role of CuCl on the mechanism of dibenzo-p-dioxin formation from poly-chlorophenol precursors: A computational study[J]. Chemosphere 145:77–82. doi:10.1016/j.chemosphere.2015.11.042.
  • Ficarella, A., and D. Laforgia. 2000. Numerical simulation of flow-field and dioxins chemistry for incineration plants and experimental investigation[J]. Waste Manag 20 (1):27–49. doi:10.1016/S0956-053X(99)00301-3.
  • Gan, M., G. Wong, X. Fan, Z. Ji, and Z. Wang. 2020. Enhancing the degradation of dioxins during the process of iron ore sintering co-disposing municipal solid waste incineration fly ash[J]. J. Clean. Prod 291 (3). doi: 10.1016/j.jclepro.2020.125286.
  • Griffin, R. D. 1986. A new theory of dioxin formation in municipal solid waste combustion[J]. Chemosphere 23:1491–500. doi:10.1016/0045-6535(86)90498-4.
  • He, H., X. Guo, L. Jin, Y. Peng, M. Tang, and S. Lu. 2022. The effect of adjusting sinter raw mix on dioxins from iron ore co-sintering with municipal solid waste incineration fly ash. Energies 15 (3):1136. doi:10.3390/en15031136.
  • Hong, H. B., I. H. Nam, K. Murugesan, Y. M. Kim, and Y. S. Chang. 2004. Biodegradation of dibenzo-p-dioxin, dibenzofuran, and chlorodibenzo-p-dioxins by Pseudomonas veronii PH-03[J]. Biodegradation 15 (5):303. doi:10.1023/B:BIOD.0000042185.04905.0d.
  • Hou, S., M. Altarawneh, E. M. Kennedy, J. C. Mackie, R. Weber, and B. Z. Dlugogorski. 2019. Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) from oxidation of 4,4′-dichlorobiphenyl (4,4′-DCB)[J]. Proc. Combust. Inst 37 (1):1075–82. doi:10.1016/j.proci.2018.05.045.
  • Hu, Y., P. zhang, D. chen, B. zhou, J. Li, and X. W. Li. 2012. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition[J]. J. Hazard. Mater 207-208 (15):79–85. doi:10.1016/j.jhazmat.2011.05.068.
  • Huang, A. B. 1998. Comparative evaluation of techniques for controlling the formation and emission of chlorinated dioxins/furans in municipal waste incineration[J]. J. Hazard. Mater doi:10.1016/S0304-3894(98)00153-8.
  • Huang, H., and A. Buskens. 1999. Comparison of dioxin formation levels in laboratory gas-phase flow reactors with those calculated using the Shaub-Tsang mechanism[J]. Chemosphere 38 (7):1595–602. doi:10.1016/S0045-6535(98)00386-5.
  • Huang, H., and A. Buekens. 2001. Chemical kinetic modeling of de novo synthesis of PCDD/F in municipal waste incinerators[J]. Chemosphere 44 (6):1505–10. doi:10.1016/S0045-6535(00)00365-9.
  • Huang, L. 2005. Experimental study on low temperature heat treatment and ULTRAVIOLET photolysis of dioxins in municiple solid waste incineration process[D]. City: Zhejiang university.
  • Huang, W. Y., H. H. Ngo, C. Lin, C. T. Vu, A. Kaewlaoyoong, T. Boonsong, H. T. Tran, X. T. Bui, T. Vo, and J. Chen. 2019. Aerobic co-composting degradation of highly PCDD/F-contaminated field soil. A study of bacterial community[J]. Sci. Total Environ 660 (10):595–602. doi:10.1016/j.scitotenv.2018.12.312.
  • Huber, F., H. Herzel, C. Adam, O. Mallow, D. Blasenbauer, and J. Fellner. 2018. Combined disc pelletisation and thermal treatment of MSWI fly ash[J]. Waste Manag 73:381–91. doi:10.1016/j.wasman.2017.12.020.
  • Hung, P. C., H. C. Shu, H. C. Kai, and M. B. Chang. 2010. Degradation of gaseous dioxin-like compounds with dielectric barrier discharges[J]. J. Hazard. Mater 182 (1–3):246–51. doi:10.1016/j.jhazmat.2010.06.021.
  • Hunsinger, H., H. Seifert, and K. Jay. 2007. Reduction of PCDD/F formation in MSWI by a process-integrated SO2 cycle[J]. Environ. Eng. Sci 24 (8):1145–59. doi:10.1089/ees.2007.0108.
  • Jiao, S., Y. Qiu, P. Ding, P. Peng, H. Yang, and L. Li. 2017. Conjugative transfer of dioxin-catabolic megaplasmids and bioaugmentation prospects of a rhodococcus sp[J]. Environ. Sci. Technol 51 (11):6298–307. doi:10.1021/acs.est.7b00188.
  • Jin, Y., H. Tian, and Y. Nie. 2003. Formation mechanism and influencing factors of dioxins in waste incineration system[J]. Chongqing Environ. Sci 25 (4):4. doi:10.3969/j.1674-2842.2003.04.005.
  • Jin, Y. Q., X. J. Ma, X. G. Jiang, H. M. Liu, X. D. Li, and J. H. Yan. 2013. Hydrothermal degradation of polychlorinated Dibenzo- p -dioxins and polychlorinated dibenzofurans in fly ash from municipal solid waste incineration under non-oxidative and oxidative conditions. Energy Fuels 27 (1):414–20. doi:10.1021/ef301325f.
  • Kanters, M. J., R. V. Nispen, R. Louw, and P. Mulder. 1996. Chlorine input and chlorophenol emission in the lab-scale combustion of municipal solid waste[J]. Environ. Sci. Technol 30 (7):2121–26. doi:10.1021/es950579e.
  • Katou, K., T. Asou, Y. Kurauchi, and R. Sameshima. 2001. Melting municipal solid waste incineration residue by plasma melting furnace with a graphite electrode[J]. Thin Solid Films 386 (2):183–88. doi:10.1016/S0040-6090(00)01640-0.
  • Kawamoto, K. 2009. Potential formation of PCDD/Fs and related bromine-substituted compounds from heating processes for ashes[J]. J. Hazard. Mater 168 (2–3):641–48. doi:10.1016/j.jhazmat.2009.02.068.
  • Ke, S., J. Yan, X. Li, S. Lu, Y. Wei, and M. Fu. 2010. Inhibition of de novo synthesis of PCDD/Fs by SO2 in a model system[J]. Chemosphere 78 (10):1230–35. doi:10.1016/j.chemosphere.2009.12.043.
  • Koester, C. J., and R. A. Hites. 1992. Photodegradation of polychlorinated dioxins and dibenzofurans adsorbed to fly ash[J]. Environscitechnol 26 (3):502–07. doi:10.1021/es00027a008.
  • Kong, S., H. Liu, H. Zeng, and Y. Liu. 2012. Formation mechanism and influencing factors of dioxin pollutants in waste incineration process[J]. Environ. Eng 2:7. CNKI:SUN:HJGC.0.2012-S2-070.
  • Lechner, B. U. 2001. Regiospecific dechlorination of spiked tetra- and trichlorodibenzo-p-dioxins by anaerobic bacteria from PCDD/F-contaminated Spittelwasser sediments[J]. Chemosphere. doi:10.1016/S0045-6535(00)00420-3.
  • Lei, M. 2017. Emission characteristics and control of dioxins and heavy metals from small rural household garbage heat treatment furnace[D]. City: South China University of Technology.
  • Li, X., H. Zhang, X. Zheng, Z. Yin, and W. Le. 2011. Visible light responsive N-F-codoped TiO2 photocatalysts for the degradation of 4-chlorophenol[J]. J. Environ. Sci 23 (11):1919–24. doi:10.1016/S1001-0742(10)60656-0.
  • Li, J. 2016. Harmless dispoal technologies of fly ash from waste incineration[J]. Enterp. Technol. Dev 35 (7):2. CNKI:SUN:QYJK.0.2016-20-002.
  • Lin, X., A. Dai, F. Jianying, L. Xiaodong, and L. Shengyong. 2015. Simultaneous suppression of PCDD/F and NOx during municipal solid waste incineration[J]. Chemosphere Environ. Toxicol. Risk Assess 126:60–66. doi:10.1016/j.chemosphere.2015.02.005.
  • Liu, W., M. Zheng, Z. Bing, Y. Qian, X. Ma, and W. Liu. 2005. Inhibition of PCDD/Fs formation from dioxin precursors by calcium oxide[J]. Chemosphere 60 (6):785–90. doi:10.1016/j.chemosphere.2005.04.020.
  • Liu, F., H. Yu, D. Zhang, R. Wei, and Y. Zhang. 2010. Study on formation mechanism and control of dioxins in waste incineration process[J]. Sol. Energy 8:4. doi:10.3969/j.1003-0417.2010.08.016.
  • Liu, G., J. Zhan, M. Zheng, L. Li, C. Li, X. Jiang, M. Wang, Y. Zhao, and R. Jin. 2015. Field pilot study on emissions, formations and distributions of PCDD/Fs from cement kiln co-processing fly ash from municipal solid waste incinerations[J]. J. Hazard. Mater 299 (1):471–78. doi:10.1016/j.jhazmat.2015.07.052.
  • Liu, W., S. Liu, and G. Huang. 2016. Research on the sorting reclaim system of municipal solid waste based on the concept of “cradle to cradle”[J]. Procedia Environ. Sci 31:482–90. doi:10.1016/j.proenv.2016.02.057.
  • Liu, L. 2019. Study on hydrothermal degradation of dioxins in municipal solid waste incineration fly ash[D]. City: China University of Mining and Technology (Jiangsu).
  • Liu, L. 2020. Formation mechanisms and control measures of dioxins in municipal solid waste incineration[J]. Resour. conserv. Environ. Prot 5:2. CNKI:SUN:ZYJH.0.2020-05-090.
  • Lu, S. 2004. Study on the formation, emission and control mechanism of dioxins during garbage and coal combustion[D]. City: Zhejiang University.
  • Lu, S., Y. Ji, A. Buekens, Z. Ma, Y. Jin, X. Li, and J. Yan. 2013. Activated carbon treatment of municipal solid waste incineration flue gas[J]. Waste Manag. Res 31 (2):1263–71. doi:10.1177/0734242X12462282.
  • Lu, J., W. Liu, and S. Zhang. 2020. The utility model relates to a cold electrode electric dust collector for agglomeration and collecting condensable particles. CN210449518U[P].
  • Luna, A., B. Amekraz, J. P. Morizur, J. Tortajada, M. O, and M. Yá?Ez. 2000. Reactions of Urea with Cu + in the Gas Phase: An Experimental and Theoretical Study[J]. J. Phys. Chem. A 104 (14):3132–41. doi:10.1021/jp9934634.
  • Ma, X. Study on the treatment of heavy metals and dioxins from municiple solid waste incineration fly ash by hydrothermal method[D]. City: Zhejiang university.
  • Ma, W., and P. W. Brown. 1997. Hydrothermal reactions of fly ash with Ca(OH)2 and CaSO4•2H2O[J]. Cem. Concr. Res 27 (8):1237–48. doi:10.1016/S0008-8846(97)00116-6.
  • Ma, X. C., X. P. Zeng, J. T. Liu, K. K. You, and J. X. Ren. 2012. Technology to Control PCDD/Fs from MSW incineration processes[J]. Adv. Mater. Res 610-613:2621–26. doi:10.4028/AMR.610-613.2621http://www.scientific.net/.
  • Ma, H., N. Du, X. Lin, C. Liu, J. Zhang, and Z. Miao. 2018. Inhibition of element sulfur and calcium oxide on the formation of PCDD/Fs during co-combustion experiment of municipal solid waste[J]. Sci. Total Environ 633:1263–71. doi:10.1016/j.scitotenv.2018.03.282.
  • Megharaj, M., B. Ramakrishnan, K. Venkateswarlu, N. Sethunathan, and R. Naidu. 2011. Bioremediation approaches for organic pollutants: A critical perspective[J]. Environ Int 37 (8):1362–75. doi:10.1016/j.envint.2011.06.003.
  • Min, Y., C. Qin, P. Shi, C. Liu, Y. Feng, and B. Liu. 2017. Effect of municipal solid waste incineration fly ash addition on the iron ore sintering process, mineral phase and metallurgical properties of iron ore sinter[J]. ISIJ Int 57 (11):1955–61. doi:10.2355/isijinternational.ISIJINT-2017-310.
  • Min, Y., C. Liu, P. Shi, C. Qin, Y. Peng, and B. Liu. 2018. Effects of the addition of municipal solid waste incineration fly ash on the behavior of polychlorinated dibenzo-p-dioxins and furans in the iron ore sintering process[J]. Waste Manag 77:287–93. doi:10.1016/j.wasman.2018.04.011.
  • Nam, I. H., Y. M. Kim, S. Schmidt, and Y. S. Chang. 2006. Biotransformation of 1,2,3-Tri- and 1,2,3,4,7,8-Hexachlorodibenzo-p- dioxin by sphingomonas wittichii strain RW1[J]. Appl. Environ. Microbiol 72 (1):112–16. doi:10.1128/AEM.72.1.112-116.2006.
  • National Bureau of Statistics of China. 2020. China Statistical Yearbook[J]. Accessed June 19, 2020. http://www.stats.gov.cn/.
  • Olivier, P., C. And, A. Rafin, and V. Etienne. 2004. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil[J]. Int. Biodeterior. Biodegradation. doi:10.1016/j.ibiod.2004.01.003.
  • Osada, Y., K. Hirota, M. Sudo, S. Baba, E. Shibuya, T. Doi, M. Nakajima, M. Komiya, K. Miyajima, and T. Miyata. 1995. Pilot-scale test on electron beam treatment of municipal solid waste flue gas with spraying slaked-lime slurry[J]. Radiat. Phys. Chem 45 (6):1021–27. doi:10.1016/0969-806X(94)00158-G.
  • Pariatamby, A., and Y. L. Kee. 2016. Persistent organic pollutants management and remediation[J]. Procedia Environ. Sci 31:842–48. doi:10.1016/j.proenv.2016.02.093.
  • Paur, H. R., H. Mtzing, and W. Schikarski. 1991. Removal of chlorinated dioxins and furans from simulated incinerator flue gas by electron beam[C]. 4th World Congress of Chemical Engineering, Karlsruhe, Germany.
  • Pelaez, M., N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, and K. O’Shea. 2012. A review on the visible light active titanium dioxide photocatalysts for environmental applications[J]. Appl Catal B 125. doi:10.1016/j.apcatb.2012.05.036.
  • Peng, Y., S. Lu, X. Li, J. Yan, and K. F. Cen. 2020. Measurement, and control of dioxins from the incineration of municipal solid wastes: Recent advances and perspectives[J]. Energy Fuels 34 (11):13247–67. doi:10.1021/acs.energyfuels.0c02446.
  • Perelo, L. W. 2010. Review: In situ and bioremediation of organic pollutants in aquatic sediments[J]. J. Hazard. Mater 177 (1–3):81–89. doi:10.1016/j.jhazmat.2009.12.090.
  • Qin, C. 2017. Experimental study on the treatment of waste incineration fly ash by sintering process [D]. City: Northeast University.
  • Ren, M., H. Zhang, Y. Fan, H. Zhou, R. Cao, Y. Gao, and J. Chen. 2021. Suppressing the formation of chlorinated aromatics by inhibitor sodium thiocyanate in solid waste incineration process[J]. Sci. Total Environ 798:149154. doi:10.1016/j.scitotenv.2021.149154.
  • Ritter, E. R., and J. W. Bozzelli. 1994. Pathways to chlorinated dibenzodioxins and dibenzofurans from partial oxidation of chlorinated aromatics by oh radical: Thermodynamic and kinetic insights[J]. Combust. Sci. Technol 101 (1–6):153–69. doi:10.1080/00102209408951870.
  • Samaras, P., M. Blumenstock, D. Lenoir, K. W. Schramm, and A. Kettrup. 2000. PCDD/F prevention by novel inhibitors: Addition of inorganic s- and n-compounds in the fuel before combustion[J]. Environ. Sci. Technol 34 (24):5092–96. doi:10.1021/es0001207.
  • Shang, P., R. Li, J. Hao, B. Liu, and J. Tang. 2012. Research progress of heap fermentation dehydration before municipal solid waste incineration[J]. Environ. Sanit. Eng 20 (1):5–8. doi:10.3969/j.1005-8206.2012.01.002.
  • Shi, P. H., J. E. Chang, and L. C. Chiang. 2003. Replacement of raw mix in cement production by municipal solid waste incineration ash[J]. Cem. Concr. Res 33 (11):1831–36. doi:10.1016/s0008-8846(03)00206-0.
  • Shi, D. 2009. Study on pollutant control and mechanism of municipal solid waste incineration process based on new classified collection system[D]. City: Zhejiang University.
  • Shin, K. J., and Y. S. Chang. 1999. Characterization of polychlorinated dibenzo-p-dioxins, dibenzofurans, biphenyls, and heavy metals in fly ash produced from Korean municipal solid waste incinerators[J]. Chemosphere 38 (11):2655–66. doi:10.1016/S0045-6535(98)00473-1.
  • Sommer, S., R. Kamps, and K. Kleinermanns. 1996. Photooxidation of exhaust pollutants—V. Photooxidation and photoreduction of polychlorinated dibenzo-p-dioxins and dibenzofurans on fly-ash[J]. Chemosphere 33 (11):2221–27. doi:10.1016/0045-6535(96)00330-X.
  • Song, H. G. 1999. Comparison of pyrene biodegradation by white rot fungi[J]. World J. Microbiol. Biotechnol 15 (6):669–72. doi:10.1023/A:1008927424034.
  • Stanmore, B. R. 2004. The formation of dioxins in combustion systems[J]. Combust. Flame 136 (3):398–427. doi:10.1016/j.combustflame.2003.11.004.
  • Stieglitz, L., and H. Vogg. 1987. On formation conditions of PCDD/PCDF in fly ash from municipal waste incinerators[J]. Chemosphere 16 (8–9):1917–22. doi:10.1016/0045-6535(87)90188-3.
  • Sun, J. 2012. Experimental study on synthesis mechanism and preparation method of dioxins in municipal solid waste incineration process[D]. City: Tianjin University.
  • Tang, Z., Q. Huang, and Y. Yang. 2013. PCDD/Fs in fly ash from waste incineration in China: A need for effective risk management[J]. Environ. Sci. Technol 47 (11):5520–21. doi:10.1021/es401463s.
  • Tuppurainen, K., I. Halonen, P. Ruokojrvi, J. Tarhanen, and J. Ruuskanen. 1998. Formation of PCDDs and PCDFs in municipal waste incineration and its inhibition mechanisms: A review[J]. Chemosphere 36 (7):1493–511. doi:10.1016/S0045-6535(97)10048-0.
  • Tuppurainen, K., M. Aatamila, P. Ruokojärvi, I. Halonen, and J. Ruuskanen. 1999. Effect of liquid inhibitors on PCDD/F formation. Prediction of particle-phase PCDD/F concentrations using PLS modelling with gas-phase chlorophenol concentrations as independent variables[J]. Chemosphere 38 (10):2205. doi:10.1016/S0045-6535(98)00439-1.
  • Vermeulen, I., J. Van Caneghem, and C. Vandecasteele. 2013. Indication of PCDD/F formation through precursor condensation in a full-scale hazardous waste incinerator[J]. J. Mater. Cycles Waste Manag 16 (1):167–71. doi:10.1007/s10163-013-0160-7.
  • Vermeulen, I., J. V. Caneghem, and C. Vandecasteele. 2014. Indication of PCDD/F formation through precursor condensation in a full-scale hazardous waste incinerator[J]. J. Mater. Cycles Waste Manag 16 (1):167–71. doi:10.1007/s10163-013-0160-7.
  • Vogg, H., M. Metzger, and L. Stieglitz. 1987. Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration[J]. Waste Manag. Res 5 (1):285–94. doi:10.1016/0734-242X(87)90080-2.
  • Wang, C., L.-Z. Chen, Z.-J. Liu, Y. Li, Y.-Z. Wang, and K.-X. Jiao. 2020. A new technology for treating waste incineration fly ash by shaft furnace[J]. J. Iron. Steel Res. Int 28 (7):773–84. doi:10.1007/s42243-020-00453-6.
  • Wikström, E., S. Ryan, A. Touati, M. Telfer, and B. K. Gullett. 2003. Importance of chlorine speciation on de novo formation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans[J]. Environ. Sci. Technol 37 (6):1108. doi:10.1021/es026262d.
  • Wu, H. L., S. Y. Lu, X. D. Li, X. G. Jiang, J. H. Yan, M. S. Zhou, and W. Hua. 2012. Inhibition of PCDD/F by adding sulphur compounds to the feed of a hazardous waste incinerator[J]. Chemosphere 86 (4):361–67. doi:10.1016/j.chemosphere.2011.10.016.
  • Xiao, H., R. Yu, Z. Peng, D. Yan, L. Li, K. K. Helge, W. Ning, and Q. Huang. 2018. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere 210:779–88. doi:10.1016/j.chemosphere.2018.07.058.
  • Xie, J. 2010. Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization[J]. Acad. Abstr. Chin. Univ. • Environ. Sci. Eng 4 (1):108–15. doi:10.1007/s11783-010-0013-8.
  • Yamaguchi, H., E. Shibuya, Y. Kanamaru, K. Uyama, M. Nishioka, and N. Yamasaki. 1996. Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash[J]. Chemosphere 32 (1):203–08. doi:10.1016/0045-6535(94)00247-9.
  • Yan, J. H., T. Chen, X. D. Li, J. Zhang, S. Y. Lu, M. J. Ni, and K. F. Cen. 2006. Evaluation of PCDD/Fs emission from fluidized bed incinerators co-firing MSW with coal in China[J]. J. Hazard. Mater 135 (1–3):47–51. doi:10.1016/j.jhazmat.2005.12.007.
  • Yan, M., L. Xiaodong, S. Chen, L. Jianhua, and K. Yan. 2010. Effect of temperature and oxygen on the formation of chlorobenzene as the indicator of PCDD/Fs[J]. J. Environ. Sci 10:6. CNKI:SUN:HJKB.0.2010-10-025.
  • Yan, D., Z. Peng, L. Yu, Y. Sun, R. Yong, and K. Karstensen. 2018. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash[J]. Waste Manage 76:106–16. doi:10.1016/j.wasman.2018.03.006.
  • Yang, S. F., W. T. Chiu, T. M. Wang, C. T. Chen, and C. C. Tzeng. 2014. Porous materials produced from incineration ash using thermal plasma technology[J]. Waste Manag 34 (6):1079–84. doi:10.1016/j.wasman.2013.07.022.
  • Zeng, X., Z. Hao, W. Pan, X. Ma, and J. Ren. 2011. Formation and control technology of dioxins in municipal solid waste incineration process[J]. Energy Environ 4:112–14. doi:10.3969/j.1672-9064.2011.04.049.
  • Zhang, J. 2020. Study on enhanced removal of dioxins from soil by erythrococci degradation plasmids[D]. City: Shandong university.
  • Zhang, J., S. Zhang, and B. Liu. 2020. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review[J]. J. Clean. Prod 250. doi:10.1016/j.jclepro.2019.119507.
  • Zheng, Y., and G. Qi. 2008. Formation mechanism and control technology of solid waste incineration dioxins[J]. Environ. Prot. Sci 34 (3):4. doi:10.3969/j.1004-6216.2008.03.005.
  • Zhou, Y. X., P. Yan, Z. X. Cheng, M. Nifuku, X. D. Liang, and Z. C. Guan. 2003. Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash[J]. Powder Technol 135-136:345–53. doi:10.1016/S0032-5910(03)00168-2.
  • Zhu, G., and Y. Cai. 2011. Abatement measures of dioxins in waste incineration - to meet eu standards[J]. China Sci. Technol. Expo 1:1.
  • Zhu, W., Q. Gou, T. He, and L. He. 2021. Research progress of dioxins control technology in municiple solid waste fly ash[C]. China Society for Environmental Science annual Conference 2021 – Environmental Engineering Technology Innovation and Application Sub-venue, Tianjin, China.
  • Zurbrugg, C., S. Drescher, A. Patel, and H. C. Sharatchandra. 2004. Decentralised composting of urban waste–an overview of community and private initiatives in Indian cities[J]. Waste Manag 24 (7):655–62. doi:10.1016/j.wasman.2004.01.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.