983
Views
0
CrossRef citations to date
0
Altmetric
Review Paper

Adenosine triphosphate (ATP) bioluminescence-based strategies for monitoring atmospheric bioaerosols

, &
Pages 1327-1340 | Received 24 Nov 2021, Accepted 22 Jun 2022, Published online: 21 Oct 2022

References

  • Bakke, M., and S. Suzuki. 2018. Development of a novel hygiene monitoring system based on the detection of total adenylate (ATP+ADP+AMP). J. Food Prot. 81 (5):729–37. doi:10.4315/0362-028X.JFP-17-432.
  • Brooks, J. P., and C. Gerba. 2014. Bioaerosol contamination of produce: Potential issues from an unexplored contaminant route. In The produce contamination problem: Causes and solutions: Second edition, 107–21. Academic Press.
  • Byeon, J. H., C. W. Park, K. Y. Yoon, J. H. Park, and J. Hwang. 2008. Size distributions of total airborne particles and bioaerosols in a municipal composting facility. Bioresour. Technol. 99 (11):5150–54. doi:10.1016/j.biortech.2007.09.014.
  • Camatini, M., V. Corvaja, E. Pezzolato, P. Mantecca, and M. Gualtieri. 2012. PM10-biogenic fraction drives the seasonal variation of proinflammatory response in A549 cells. Environ. Toxicol. 27 (2):63–73. doi:10.1002/tox.20611.
  • Cartwright, C. H. S., and J. Kirton. 2009. Review of methods to measure bioaerosols from composting sites. Environ. Agency. SC040021/SR3:20–8.
  • Cho, Y. S., H. R. Kim, H. S. Ko, S. B. Jeong, B. Chan Kim, and J. H. Jung. 2020. Continuous surveillance of bioaerosols on-site using an automated bioaerosol-monitoring system. ACS Sens. 5 (2):395–403. doi:10.1021/acssensors.9b02001.
  • Choi, J., J. S. Kang, S. C. Hong, G.-N. Bae, and J. H. Jung. 2017. A new method for the real-time quantification of airborne biological particles using a coupled inertial aerosol system with in situ fluorescence imaging. Sens. Actuators B Chem. 244:635–41. doi:10.1016/j.snb.2017.01.055.
  • Cordeiro, A. C., J. L. Fabris, G. H. Couto, H. J. Kalinowski, and E. Bertogna. 2017. Water assessment using ultra-weak bioluminescence. J. Photochem. Photobiol. B, Biol. 177:39–43. doi:10.1016/j.jphotobiol.2017.10.014.
  • Fennelly, M., G. Sewell, M. Prentice, D. O’Connor, and J. Sodeau. 2017. Review: The use of real-time fluorescence instrumentation to monitor ambient primary biological aerosol particles (PBAP). Atmos. 9 (1):1. doi:10.3390/atmos9010001.
  • Ghosh, B., H. Lal, and A. Srivastava. 2015. Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environ. Int. 85:254–72. doi:10.1016/j.envint.2015.09.018.
  • Górny, R, D. J., and E. Krysińska-Traczyk. 1999. Size distribution of bacterial and fungal bioaerosols in indoor air. Ann. Agric. Environ. Med. 6 (2):105–13.
  • Han, T., Y. Nazarenko, P. J. Lioy, and G. Mainelis. 2011. Collection efficiencies of an electrostatic sampler with superhydrophobic surface for fungal bioaerosols. Indoor Air 21 (2):110–20. doi:10.1111/j.1600-0668.2010.00685.x.
  • Han, T., M. Wren, K. DuBois, J. Therkorn, and G. Mainelis. 2015a. Application of ATP-based bioluminescence for bioaerosol quantification: Effect of sampling method. J. Aerosol. Sci. 90:114–23. doi:10.1016/j.jaerosci.2015.08.003.
  • Han, T., H. Zhen, D. E. Fennell, and G. Mainelis. 2015b. Design and Evaluation Of The Field-Deployable Electrostatic Precipitator With Superhydrophobic Surface (FDEPSS) with high concentration rate. Aerosol Air Qual. Res. 15 (6):2397–408.
  • Harvey, E. N. 1914. On the chemical nature of the luminous material of the firefly. Sci. (New York, N.Y.) 40 (1018):33–34. doi:10.1126/science.40.1018.33.
  • Harvey, E. N., and K. P. Stevens. 1928. The brightness of the light of the west Indian elaterid beetle, pyrophorus. J. Gen. Physiol. 12 (2):269–72. doi:10.1085/jgp.12.2.269.
  • Karl, D. M. 1980a. Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev. 44 (4):739.
  • Karl, D. M. 1980b. Cellular nucleotide measurements and applications in microbial ecology. Microbiol. Rev. 44 (4):739–96. doi:10.1128/mr.44.4.739-796.1980.
  • Kim, H. R., S. An, J. Hwang, J. H. Park, and J. H. Byeon. 2019. In situ lysis droplet supply to efficiently extract ATP from dust particles for near-real-time bioaerosol monitoring. J. Hazard. Mater. 369:684–90. doi:10.1016/j.jhazmat.2019.02.088.
  • Kim, J., J. H. Jin, H. S. Kim, W. Song, S. K. Shin, H. Yi, D. H. Jang, S. Shin, and B. Y. Lee. 2016. Fully automated field-deployable bioaerosol monitoring system using carbon nanotube-based biosensors. Environ. Sci. Technol. 50 (10):5163–71. doi:10.1021/acs.est.5b06361.
  • Kim, K. H., E. Kabir, and S. A. Jahan. 2018. Airborne bioaerosols and their impact on human health. J. Environ. Sci. (China) 67:23–35. doi:10.1016/j.jes.2017.08.027.
  • Kim, S. Y., Z. Y. Kim, S. Lee, and G. Ko. 2011. Comparison of molecular and total ATP-based analytical methods with culture for the analysis of bioaerosols. Sci. Total Environ. 409 (9):1732–37. doi:10.1016/j.scitotenv.2011.01.035.
  • Kim, H. R., J.-W. Park, H. S. Kim, D. Yong, and J. Hwang. 2018. Comparison of lab-made electrostatic rod-type sampler with single stage viable impactor for identification of indoor airborne bacteria. J. Aerosol. Sci. 115:190–97. doi:10.1016/j.jaerosci.2017.11.002.
  • Kováts, N., and E. Horváth. 2016. Bioluminescence-based assays for assessing eco- and genotoxicity of airborne emissions. Lumin. 31 (4):918–23. doi:10.1002/bio.3102.
  • Kuo, Y.-M. 2015. Field evaluation of sampling bias with plastic petri dishes for size-fractionated bioaerosol sampling. Aerosol Sci. Technol. 49 (3):127–33. doi:10.1080/02786826.2015.1009530.
  • Lee, J., C. Park, Y. Kim, and S. Park. 2017. Signal enhancement in ATP bioluminescence to detect bacterial pathogens via heat treatment. BioChip J. 11 (4):287–93. doi:10.1007/s13206-017-1404-8.
  • Li, C.-S. 2010. Evaluation of microbial samplers for bacterial microorganisms. Aerosol Sci. Technol. 30 (2):100–08. doi:10.1080/027868299304705.
  • Li, L., C. Chang, and J. Wu. 2010. Research progress in the ATP bioluminescence assay and its applications. Sci. Technol. Food Ind. 31 (9):394–97.
  • Liao, L., J. H. Byeon, and J. H. Park. 2021. Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols. Environ. Res. 194:110615. doi:10.1016/j.envres.2020.110615.
  • Lin, C.-J., Y.-T. Wang, K.-J. Hsien, Y. I. Tsai, P.-Y. Kung, and J.-M. Chyan. 2013. In situ rapid evaluation of indoor bioaerosols using an ATP bioluminescence assay. Aerosol. Air. Qual. Res. 13 (3):922–31. doi:10.4209/aaqr.2013.01.0009.
  • Lindsley, W. G., B. J. Green, F. M. Blachere, S. B. Martin, and M. P. Schafer. 2017. Sampling and characterization of bioaerosols. In NIOSH manual of analytical method. 5th ed., BA1-115.
  • Lomakina, G. Y., Y. A. Modestova, and N. N. Ugarova. 2015. Bioluminescence assay for cell viability. Biochem. Mosc. 80 (6):701–13. doi:10.1134/S0006297915060061.
  • Marco, M. P., S. Gee, and B. Hammock. 1995. Immunochemical techniques for environmental analysis II. Antibody production and immunoassay development. TrAC. Trends. Anal. Chem. 14 (9):415–25. doi:10.1016/0165-9936(95)90920-I.
  • Marcovecchio, F., and C. Perrino. 2021. Contribution of primary biological aerosol particles to airborne particulate matter in indoor and outdoor environments. Chemosphere 264 (Pt 2):128510. doi:10.1016/j.chemosphere.2020.128510.
  • Marques, S., and J. Silva. 2008. Firefly bioluminescence: A mechanistic approach of luciferase catalyzed reactions. IUBMB Life 61 (1):6–17. doi:10.1002/iub.134.
  • Mbareche, H., M. Veillette, G. J. Bilodeau, and C. Duchaine. 2018. Bioaerosol sampler choice should consider efficiency and ability of samplers to cover microbial diversity. Appl. Environ. Microbiol. 84 (23). doi:10.1128/AEM.01589-18.
  • McElroy, W. D. 1963. Crystalline firefly luciferase: LH2 + ATP ⇄ LH2-AMP + PP LH-2-AMP + O2 → L-AMP + light + H2O. Meth. Enzymol. 6:445–48. Academic Press.
  • Meklin, T., T. Reponen, M. Toivola, V. Koponen, T. Husman, A. Hyvrinen, and A. Nevalainen. 2002. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmos. Environ. 36 (39):6031–39. doi:10.1016/S1352-2310(02)00769-0.
  • Monn, C. 2001. Exposure assessment of air pollutants: A review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone. Atmos. Environ. 35 (1):1–32. doi:10.1016/S1352-2310(00)00330-7.
  • Morris, D. R. P., J. Fatisson, A. L. J. Olsson, N. Tufenkji, and A. R. Ferro. 2014. Real-time monitoring of airborne cat allergen using a QCM-based immunosensor. Sens. Actuators B Chem. 190:851–57. doi:10.1016/j.snb.2013.09.061.
  • Nguyen, H. H., and M. Kim. 2017. An overview of techniques in enzyme immobilization. Appl. Sci. Convergence Technol. 26 (6):157–63. doi:10.5757/ASCT.2017.26.6.157.
  • Okanojo, M., N. Miyashita, A. Tazaki, H. Tada, F. Hamazoto, M. Hisamatsu, and H. Noda. 2017. Attomol-level ATP bioluminometer for detecting single bacterium. Lumin. 32 (5):751–56. doi:10.1002/bio.3246.
  • Okten, S., and A. Asan. 2012. Airborne fungi and bacteria in indoor and outdoor environment of the pediatric unit of Edirne government hospital. Environ. Monit. Assess. 184 (3):1739–51. doi:10.1007/s10661-011-2075-x.
  • Park, C. W., J. H. Byeon, K. Y. Yoon, J. H. Park, and J. Hwang. 2011. Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Sep. Purif. Technol. 77 (1):87–93. doi:10.1016/j.seppur.2010.11.024.
  • Park, K. T., D. G. Cho, J. W. Park, S. Hong, and J. Hwang. 2015b. Detection of airborne viruses using electro-aerodynamic deposition and a field-effect transistor. Sci. Rep. 5 (1):17462. doi:10.1038/srep17462.
  • Park, J. W., H. R. Kim, and J. Hwang. 2016. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay. Anal. Chim. Acta 941:101–07. doi:10.1016/j.aca.2016.08.039.
  • Park, C. W., J. W. Park, S. H. Lee, and J. Hwang. 2014. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection. Biosens. Bioelectron. 52:379–83. doi:10.1016/j.bios.2013.09.015.
  • Park, J. W., C. W. Park, S. H. Lee, and J. Hwang. 2015a. Fast monitoring of indoor bioaerosol concentrations with ATP bioluminescence assay using an electrostatic rod-type sampler. PLoS One 10 (5):e0125251. doi:10.1371/journal.pone.0125251.
  • Prussin, A. J., 2nd;, E. B.;. Garcia, and L. C. Marr. 2015. Total virus and bacteria concentrations in indoor and outdoor air. Environ. Sci. Technol. Lett. 2 (4):84–88. doi:10.1021/acs.estlett.5b00050.
  • Robinson, D. L. 2012. Evaluation of bacterial sampling methods for use with the bacterial tag-encoded flexible (FLX) amplicon pyrosequencing (bTEFAP) technique. Colorado State University. Master of Science (M.S.).
  • Ryškevič, N., S. Juršėnas, P. Vitta, E. Bakienė, R. Gaska, and A. Žukauskas. 2010. Concept design of a UV light-emitting diode based fluorescence sensor for real-time bioparticle detection. Sens. Actuators B Chem. 148 (2):371–78. doi:10.1016/j.snb.2010.05.042.
  • Santangelo, M. F., S. Libertino, A. P. F. Turner, D. Filippini, and W. C. Mak. 2018. Integrating printed microfluidics with silicon photomultipliers for miniaturised and highly sensitive ATP bioluminescence detection. Biosens. Bioelectron. 99:464–70. doi:10.1016/j.bios.2017.07.055.
  • Satoh, T., J. Kato, N. Takiguchi, H. Ohtake, and A. Kuroda. 2014. ATP amplification for ultrasensitive bioluminescence assay: Detection of a single bacterial cell. Biosci. Biotechnol. Biochem. 68 (6):1216–20.
  • Shah, N., and D. C. Naseby. 2015. Validation of constitutively expressed bioluminescent Pseudomonas aeruginosa as a rapid microbiological quantification tool. Biosens. Bioelectron. 68:447–53. doi:10.1016/j.bios.2015.01.008.
  • Swanson, B. 2018. Development and characterization of an inexpensive single-particle fluorescence spectrometer for bioaerosol monitoring. Opt. Express 26 (3):3646–60. doi:10.1364/OE.26.003646.
  • Tahir, M. A., X. Zhang, H. Cheng, D. Xu, Y. Feng, G. Sui, H. Fu, V. K. Valev, L. Zhang, and J. Chen. 2019. Klarite as a label-free SERS-based assay: A promising approach for atmospheric bioaerosol detection. Analyst. 145 (1):277–85. doi:10.1039/C9AN01715A.
  • Tovena Pecault, I., M. Thibaudon, J. Clertant, and P. Godefroy. 2017. Macroparticles monitoring for biocontamination prevention. Part. Sci.Technol. 36 (7):908–12. doi:10.1080/02726351.2017.1346021.
  • Van Leuken, J. P. G., A. N. Swart, A. H. Havelaar, A. Van Pul, W. Van der Hoek, and D. Heederik. 2016. Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock - A review to inform risk assessment studies. Microb. Risk Anal. 1:19–39. doi:10.1016/j.mran.2015.07.002.
  • Watanabe, A., N. Tamaki, K. Yokota, M. Matsuyama, and S. Kokeguchi. 2018. Use of ATP bioluminescence to survey the spread of aerosol and splatter during dental treatments. J. Hosp. Infect. 99 (3):303–05. doi:10.1016/j.jhin.2018.03.002.
  • Willeke, K., X. Lin, and S. A. Grinshpun. 1998. Improved aerosol collection by combined impaction and centrifugal motion. Aerosol Sci. Technol. 28 (5):439–56. doi:10.1080/02786829808965536.
  • Wu, Y., A. Calis, Y. Luo, C. Chen, M. Lutton, Y. Rivenson, X. Lin, H. C. Koydemir, Y. Zhang, H. Wang, et al. 2018a. Label-free bioaerosol sensing using mobile microscopy and deep learning. ACS Photonics 5 (11):4617–27. doi:10.1021/acsphotonics.8b01109.
  • Wu, Y., A. Ray, Q. Wei, A. Feizi, X. Tong, E. Chen, Y. Luo, and A. Ozcan. 2018b. Deep learning enables high-throughput analysis of particle-aggregation-based biosensors imaged using holography. ACS Photonics 6 (2):294–301. doi:10.1021/acsphotonics.8b01479.
  • Xie, W., Y. Li, W. Bai, J. Hou, T. Ma, X. Zeng, L. Zhang, and T. An. 2021. The source and transport of bioaerosols in the air: A review. Front. Environ. Sci. Eng. 15 (3):44. doi:10.1007/s11783-020-1336-8.
  • Yoon, K. Y., C. W. Park, J. H. Byeon, and J. Hwang. 2010. Design and application of an inertial impactor in combination with an ATP bioluminescence detector for in situ rapid estimation of the efficacies of air controlling devices on removal of bioaerosols. Environ. Sci. Technol. 44 (5):1742–46. doi:10.1021/es903437z.
  • Yoo, M. S., M. Shin, Y. Kim, M. Jang, Y. E. Choi, S. J. Park, J. Choi, J. Lee, and C. Park. 2017. Development of electrochemical biosensor for detection of pathogenic microorganism in Asian dust events. Chemosphere 175:269–74. doi:10.1016/j.chemosphere.2017.02.060.
  • Zhang, C., R. Zhu, and W. Yang. 2016. A micro aerosol sensor for the measurement of airborne ultrafine particles. Sens. (Basel) 16 (3):399.
  • Zhang, P., Y. Zhao, X. Liao, W. Yang, Y. Zhu, and H. Huang. 2013. Development and calibration of a single UV LED based bioaerosol monitor. Opt. Express 21 (22):26303–10. doi:10.1364/OE.21.026303.
  • Zhang, Z., C. Wang, L. Zhang, Q. Meng, Y. Zhang, F. Sun, and Y. Xu. 2017. Fast detection of Escherichia coli in food using nanoprobe and ATP bioluminescence technology. Anal. Methods 9 (36):5378–87. doi:10.1039/C7AY01607G.
  • Zhen, H., T. Han, D. E. Fennell, and G. Mainelis. 2013. Release of free DNA by membrane-impaired bacterial aerosols due to aerosolization and air sampling. Appl. Environ. Microbiol. 79 (24):7780–89. doi:10.1128/AEM.02859-13.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.