1,139
Views
0
CrossRef citations to date
0
Altmetric
Technical Papers

Effect of medium-density fiberboard wastes ash on calcium silicate hydrate crystal of concrete

, , , & ORCID Icon
Pages 40-49 | Received 02 Feb 2022, Accepted 15 Jul 2022, Published online: 14 Oct 2022

References

  • Adak, D., M. Sarkar, and S. Mandal. 2017. Structural performance of nano-silica modified fly-ash based geopolymer concrete. Constr. Build. Mater 135:430–39. doi:10.1016/j.conbuildmat.2016.12.111.
  • Adebakin, I. H., K. Gunasekaran, and R. Annadurai. 2018. Mechanical properties of self-compacting coconut shell concrete blended with fly ash. Asian J. Civ. Eng 80:113–24.
  • Ahsan, M. B., and Z. Hossain. 2018. Supplemental use of rice husk ash (RHA) as a cementitious material in concrete industry. Constr. Build. Mater 178:1–9. doi:10.1016/j.conbuildmat.2018.05.101.
  • Alehyen, S., E. L. Achouri, and M. Taibi. 2017. Characterization, microstructure and properties of fly ash-based geopolymer. J. Mater. Environ. Sci 8 (5):1783–96.
  • Alsubari, B., P. Shafigh, Z. Ibrahim, M. F. Alnahhal, and M. Z. Jumaat. 2018. Properties of eco-friendly self-compacting concrete containing modified treated palm oil fuel ash. Constr. Build. Mater 158:742–54. doi:10.1016/j.conbuildmat.2017.09.174.
  • ASTM, C127. 1993. Standard test method for specific gravity and absorption of coarse aggregate. Washington, USA: ASTM International.
  • ASTM C128. 2004. Standard test method for density, relative density (Specific gravity), and absorption of fine aggregate. Washington, USA: ASTM International.
  • ASTM C150 A. 1999. Standard specification for Portland cement. Annual Book of Standards.
  • ASTM C39/C39M. 2014. Standard test method for compressive strength of cylindrical concrete specimens.
  • ASTM C511. 2013. Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes. Washington, USA: ASTM International.
  • ASTM C618. 2004. Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in concrete. Washington, USA: ASTM International.
  • ASTM-C305-13. 2013. Standard practice for mechanical of hydraulic cement pastes and mortars of plastic consistency. Annual Book of Standards.
  • Awal, A. A., and I. Shehu. 2013. Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash. Fuel 105:728–31. doi:10.1016/j.fuel.2012.10.020.
  • Branchn, J. L., R. Epps, and D. S. Kosso. 2018. The impact of carbonation on bulk and ITZ porosity in microconcrete materials with fly ash replacement. Cem. Concr. Res 103:170–78. doi:10.1016/j.cemconres.2017.10.012.
  • Chakraborty, A., and A. Goswami. 2015. Conservation of environment by using fly ash and rice husk ash as a partial cement replacement in concrete. Int. J. Energy Environ. Technol 2 (1):9–11.
  • Chowdhury, S., A. Maniar, and O. M. Suganya. 2015. Strength development in concrete with wood ash blended cement and use of soft computing models to predict strength parameters. J. Adv. Res 6 (6):907–13. doi:10.1016/j.jare.2014.08.006.
  • Collivignarelli, M. C., G. Cillari, P. Ricciardi, M. C. Miino, V. Torretta, E. C. Rada, and A. Abbà. 2020. The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability 12 (19):7903. doi:10.3390/su12197903.
  • Danraka, M. N., F. N. A. A. Aziz, M. S. Jaafar, N. M. Nasir, and S. Abdulrashid. 2019. Application of wood waste ash in concrete making: Revisited. Lect. Notes Civ. Eng 11:69–78.
  • Faraj, R. H., A. F. H. Sherwani, L. H. Jafer, and D. F. Ibrahima. 2020. Rheological behavior and fresh properties of self-compacting high strength concrete containing recycled PP particles with fly ash and silica fume blended. J. Build. Eng 6 (10):1076–84. In Press. doi:10.1016/j.eng.2020.10.003.
  • Farajr, R. H., A. F. H. Sherwani, and A. Daraei. 2019. Mechanical, fracture and durability properties of self-compacting high strength concrete containing recycled polypropylene plastic particles. J. Build. Eng 25:100808. doi:10.1016/j.jobe.2019.100808.
  • Farzadnia, N., S. H. Bahmani, A. Asadi, and S. Hosseini. 2018. Mechanical and microstructural properties of cement pastes with rice husk ash coated with carbon nanofibers using a natural polymer binder. Constr. Build. Mater 175:691–704. doi:10.1016/j.conbuildmat.2018.04.205.
  • Fernández-Jiménez, A., and A. Palomo. 2005. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater 86 (1–3):1–3. doi:10.1016/j.micromeso.2005.05.057.
  • Hadi, M. N. S., T. Yu, and M. Al-Azzawi. 2018. Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Constr. Build. Mater 175:41–54. doi:10.1016/j.conbuildmat.2018.04.092.
  • Hagel, S., J. Joy, C. Cicala, and B. Saake. 2021. Recycling of waste MDF by steam refining: Evaluation of fiber and paper strength properties. Waste Biomass Valorization 12 (10):5701–13. doi:10.1007/s12649-021-01391-4.
  • Hlaváček, P., R. Šulc, V. Šmilauer, C. Rößler, and R. Snop. 2018. Ternary binder made of CFBC fly ash, conventional fly ash, and calcium hydroxide: Phase and strength evolution. Cem. Concr. Compos 90:100–07. doi:10.1016/j.cemconcomp.2017.09.020.
  • Ibrahim, M., M. A. M. Johari, M. K. Rahman, and M. Maslehuddin. 2017. Effect of alkaline activators and binder content on the properties of natural pozzolan-based alkali activated concrete. Constr. Build. Mater 147:648–60. doi:10.1016/j.conbuildmat.2017.04.163.
  • Irle, M., F. Privat, L. Couret, C. Belloncle, B. Cathala, E. Bonnin, and B. Cathala. 2019. Advanced recycling of post-consumer solid wood and MDF. Wood Mater. Sci. Eng 14 (1):19–23. doi:10.1080/17480272.2018.1427144.
  • Iswarya, G., and M. Beulah. 2020. Use of zeolite and industrial waste materials in high strength concrete – A review. Mater. Today 46: 143–157.
  • Jang, H. S., Y. T. Lim, J. H. Kang, S. U. So, and H. So. 2018. Influence of calcination and cooling conditions on pozzolanic reactivity of paper mill sludge. Constr. Build. Mater 166:257–70. doi:10.1016/j.conbuildmat.2018.01.119.
  • Jung, S. H., V. Saraswathy, S. Karthick, P. Kathi, and S. J. Kwon. 2018. Microstructure characteristics of fly ash concrete with rice husk ash and lime stone powder. Int. J. Concr. Struct. Mater 7:12–17.
  • Karim, M. R., M. F. M. Zain, M. Jamil, and F. C. La. 2013. Fabrication of a non using slag, palm oil fuel ash and rice husk ash with sodium hydroxide. Constr. Build. Mater 49:894. doi:10.1016/j.conbuildmat.2013.08.077.
  • Katare, V. D., and M. V. Madurwar. 2020. Design and investigation of sustainable pozzolanic material. J. Clean. Prod 24 (4):14–25.
  • Kuroki, S., T. Hashishin, T. Morikawa, K. Yamashita, and M. Matsuda. 2019. Selective synthesis of zeolites A and X from two industrial wastes: Crushed stone powder and aluminum ash. J. Environ. Manage 231:749–56. doi:10.1016/j.jenvman.2018.10.082.
  • Li, N., N. Farzadnia, and C. Shi. 2017. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem. Concr. Res 100:214–26. doi:10.1016/j.cemconres.2017.07.008.
  • Li, Q., and J. Hu. 2020. Mechanical and durability properties of cement-stabilized recycled concrete aggregate. Sustainability 12 (18):7380. doi:10.3390/su12187380.
  • Liu, M. U. J., M. Santhanam, M. Z. Jumaat, K. H. Mo, and K. H. Mo. 2016. Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete. Constr. Build. Mater 120:112–22. doi:10.1016/j.conbuildmat.2016.05.076.
  • Memon, S. A., and M. K. Khan. 2018. Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J. Clean. Prod 175:442–55. doi:10.1016/j.jclepro.2017.12.050.
  • Nguyen, T. T. H., H. H. Mai, D. H. Phan, and D. L. Nguyen. 2020. Responses of concrete using steel slag as coarse aggregate replacement under splitting and flexure. Sustainability 12 (12):4913. doi:10.3390/su12124913.
  • Omrane, M., S. Kenai, E. Kadri, and A. Aït-Mokhtar. 2017. Performance and durability of self compacting concrete using recycled concrete aggregates and natural pozzolan. J. Clean. Prod 165:415–30. doi:10.1016/j.jclepro.2017.07.139.
  • Pacewska, B., and I. Wilińska. 2020. Usage of supplementary cementitious materials: Advantages part I. C–S–H, C–A–S–H and other products formed in different binding mixtures. J. Therm. Anal. Calorim 142 (1):371–93. doi:10.1007/s10973-020-09907-1.
  • Pan, X., C. Shi, N. Farzadnia, X. Hu, and J. Zheng. 2019. Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing. Cem. Concr. Res 99:89–99.
  • Pane, I., and W. Hansen. 2005. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem. Concr. Res 35 (6):1155–64. doi:10.1016/j.cemconres.2004.10.027.
  • Pavlíková, M., L. Zemanová, J. Pokorný, M. Záleská, O. Jankovský, M. Lojka, D. Sedmidubský, and Z. Pavlík. 2018. Valorization of wood chips ash as an eco-friendly mineral admixture in mortar mix design. Waste Manage 80:89–100. doi:10.1016/j.wasman.2018.09.004.
  • Salih, M. A., A. A. A. Ali, and N. Farzadnia. 2014. Characterization of mechanical and microstructural properties of palm oil fuel ash geopolymer cement paste. Constr. Build. Mater 65:592–603. doi:10.1016/j.conbuildmat.2014.05.031.
  • Shahbazpanahi, S. 2019. Mechanical and microstructural properties of Pistacia Atlantica Ash concrete. Modares Civil Eng. J 19 (2):113–24. In Persia.
  • Shahbazpanahi, S., and R. H. Faraj. 2020. Feasibility study on the use of shell sunflower ash and shell pumpkin ash as supplementary cementitious materials in concrete. J. Build. Eng 30:101271. doi:10.1016/j.jobe.2020.101271.
  • Shahbazpanahi, S., S. Manie, R. H. Faraj, and M. Seraji. 2021. Feasibility study on the use of tagouk ash as pozzolanic material. Clean Technol. Environ 23 (4):1283–94. doi:10.1007/s10098-020-02021-8.
  • Siddique, R. 2012. Utilization of wood ash in concrete manufacturing. Resour. Conserv. Recycl 67:27–33. doi:10.1016/j.resconrec.2012.07.004.
  • Spence, W. P. 2005. The home carpenters & woodworker’s repair manual. New York City: Springer.
  • Sun, T., K. Ge, G. Wang, H. Geng, Z. Shui, S. Cheng, and M. Chen. 2019. Comparing pozzolanic activity from thermal-activated water-washed and coal-series kaolin in Portland cement mortar. Constr. Build. Mater 227:117092. doi:10.1016/j.conbuildmat.2019.117092.
  • Tamanna, K., S. N. Raman, M. Jamil, and R. Hamid. 2020. Utilization of wood waste ash in construction technology: A review. Constr. Build. Mater 237:117654.
  • Thomas, B. S., S. K. Hasan, and S. Arel. 2017. Sustainable concrete containing palm oil fuel ash as a supplementary cementitious material – A review. Renewable Sustainable Energy Rev 80:550–61.
  • Vishwakarma, V., and D. Ramachandran. 2018. Green concrete mix using solid waste and nanoparticles as alternatives – A review. Constr. Build. Mater 162 (20):96–103. doi:10.1016/j.conbuildmat.2017.11.174.
  • Zeyad, A. M., M. A. M. Johari, B. A. Tayeh, and M. O. Yusuf. 2016. Pozzolanic reactivity of ultrafine palm oil fuel ash waste on strength and durability performances of high strength concrete. J. Clean. Prod 144 (15):511–22. doi:10.1016/j.jclepro.2016.12.121.
  • Zhang, S., A. Keulen, K. Arbi, and G. Ye. 2017. Waste glass as partial mineral precursor in alkali-activated slag/fly ash system. Cem. Concr. Res 102:29–40. doi:10.1016/j.cemconres.2017.08.012.