701
Views
2
CrossRef citations to date
0
Altmetric
Technical Papers

Hazardous waste management system for Thailand’s local administrative organization via route and location selection

ORCID Icon & ORCID Icon
Pages 1121-1136 | Received 23 Feb 2022, Accepted 01 Aug 2022, Published online: 22 Aug 2022

References

  • Adeleke, O. J., and D. O. Olukanni. 2020. Facility location problems: Models, techniques, and applications in waste management. Recycling 5 (10):1–20. doi:10.3390/recycling5020010.
  • Adeleke, O. J., D. O. Olukanni, and M. O. Olusanya. 2019. An improved location model for the collection of sorted solid waste in densely populated urban centres. In Computational statistics and mathematical modeling methods in intelligent systems. CoMeSySo 2019, advances in intelligent systems and computing, ed. R. Silhavy, P. Silhavy, and Z. Prokopova, vol. 1047, 125–35. Cham: Springer.
  • Alenezy, E. J., and R. F. Khalaf. 2013. Implementing lagrangean decomposition technique to acquire an adequate lower bound on the facility location problem solution. Appl. Math. 4 (8):1168–72. doi:10.4236/am.2013.48156.
  • Alumur, S., and B. Y. Kara. 2007. A new model for the hazardous waste location-routing problem. Comput. Oper. Res. 34 (5):1406–23. doi:10.1016/j.cor.2005.06.012.
  • Araee, M., and B. Aghamohammadi. 2020. Designing a multi-objective model for a hazardous waste routing problem considering flexibility of routes and social effects. J. Ind. Prod. Eng. 37 (1):33–45. doi:10.1080/21681015.2020.1727970.
  • Asefi, H., S. Lim, M. Maghrebi, and S. Shahparvari. 2019. Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management. Ann. Oper. Res. 273 (1–2):75–110. doi:10.1007/s10479-018-2912-1.
  • Atthirawong, W., and P. Luangpaiboon. 2022. Determination of storage area and hub via the enhanced elevator kinematics optimization method. J. Ind. Prod. Eng. 39 (1):30–41. doi:10.1080/21681015.2021.1955309.
  • Badran, M., and S. El-Haggar. 2006. Optimization of municipal solid waste management in port said-Egypt. Waste Manage. 26 (5):534–45. doi:10.1016/j.wasman.2005.05.005.
  • Baron, O., J. Milner, and H. Naseraldin. 2011. Facility location: A robust optimization approach. Prod. Oper. Manage. 20 (5):772–85.
  • Berglund, P. G., and C. Kwon. 2014. Robust facility location problem for hazardous waste transportation. Network Spatial Econ. 14 (1):91–116. doi:10.1007/s11067-013-9208-4.
  • Charnes, A., W. W. Cooper, and E. L. Rhodes. 1978. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (6):429–44. doi:10.1016/0377-2217(78)90138-8.
  • Current, J., M. S. Daskin, and D. Schilling. 2002. Discrete network location models. In Facility location: Applications and theory, Z. Drezner and H. W. Hamacher., ed., ch. 3, 81–118. New York, NY: Springer-Verlag.
  • Current, J., S. Ratick, and C. ReVelle. 1997. Dynamic facility location when the total number of facilities is uncertain: A decision analysis approach. Eur. J. Oper. Res. 110 (3):597–609. doi:10.1016/S0377-2217(97)00303-2.
  • Eiselt, H. A. 2007. Locating landfills—Optimization vs. reality. Eur. J. Oper. Res. 179 (3):1040–49. doi:10.1016/j.ejor.2005.11.039.
  • Eiselt, H. A., and V. Marianov. 2014. A bi-objective model for the location of landfills for municipal solid waste. Eur. J. Oper. Res. 235 (1):187–94. doi:10.1016/j.ejor.2013.10.005.
  • Erkut, E., A. Karagiannidis, G. Perkoulidis, and S. A. Tjandra. 2008. A multicriteria facility location model for municipal solid waste management in North Greece. Eur. J. Oper. Res. 187 (3):1402–21. doi:10.1016/j.ejor.2006.09.021.
  • Farahani, R. Z., and M. Hekmatfar. 2009. Facility location concepts, models, algorithms and case studies. Berlin, Heidelberg: Springer.
  • Farahani, R. Z., M. SteadieSeifi, and N. Asgari. 2010. Multiple criteria facility location problems: A survey. Appl. Math. Model. 34 (7):1689–709. doi:10.1016/j.apm.2009.10.005.
  • Fazzo, L., F. Minichilli, M. Santoro, A. Ceccarini, M. DellaSeta, F. Bianchi, P. Comba, and M. Martuzzi. 2017. Hazardous waste and health impact: A systematic review of the scientific literature. Environ. Health 16 (1):107. doi:10.1186/s12940-017-0311-8.
  • Feng, J. 2021. Application of a bilevel programming model in disposal site selection for hazardous waste. Environ. Eng. Sci. 38 (8):789–801. doi:10.1089/ees.2020.0375.
  • Fiorucci, P., R. Minciardi, M. Robba, and R. Sacile. 2003. Solid waste management in urban areas: Development and application of a decision support system. Resour. Conserv. Recycl. 37 (4):301–28. doi:10.1016/S0921-3449(02)00076-9.
  • Francis, R. L., L. F. McGinnis, and J. A. White. 1992. Facility layout and layout: An analytical approach. Englewood Cliffs, NJ: Prentice-Hall.
  • Galante, G., G. Aiello, M. Enea, and E. Panascia. 2010. A multi-objective approach to solid waste management. Waste Manage. 30 (8–9):1720–28. doi:10.1016/j.wasman.2010.01.039.
  • Gardziejczyk, W., and P. Zabicki. 2017. Normalization and variant assessment methods in selection of road alignment variants–case study. J. Civil Eng. Manage. 23 (4):510–23. doi:10.3846/13923730.2016.1210223.
  • Ghezavati, V., and S. Morakabatchian. 2015. Application of a fuzzy service level constraint for solving a multi-objective location-routing problem for the industrial hazardous wastes. J. Intell. Fuzzy Syst. 28 (5):2003–13. doi:10.3233/IFS-141341.
  • Ghiani, G., D. Laganà, E. Manni, R. Musmanno, and D. Vigo. 2014. Operations research in solid waste management: A survey of strategic and tactical issues. Comput. Oper. Res. 44 (4):22–32. doi:10.1016/j.cor.2013.10.006.
  • Ghiani, G., D. Laganà, E. Manni, and C. Triki. 2012. Capacitated location of collection sites in an urban waste management system. Waste Manage. 32 (7):1291–96. doi:10.1016/j.wasman.2012.02.009.
  • Giles, P. K., and T. P. Galvin. 1996. Center of gravity: Determination, analysis, and application. Carlisle Barracks, PA: U.S. Army War College, Center for Strategic Leadership.
  • Gkoulias, K., G. Palantzas, and D. Nalmpantis. 2021. Development of an on-spot bio-waste screening methodology with vehicle selection using multi-criteria decision analysis (MCDA): Implementation in the municipality of Chalkis, Greece. Adv. Intell. Syst. Comput. 1278:780–89.
  • He, L., and Z. Xie. 2022. Optimization of urban shelter locations using bi-level multi-objective location-allocation model. Int. J. Environ. Res. Public. Health 19 (7): article no. 4401. doi:10.3390/ijerph19074401.
  • Homayouni, Z., and M. S. Pishvaee. 2020. A bi-objective robust optimization model for hazardous hospital waste collection and disposal network design problem. J. Maternal Cycl. Waste Manage. 22 (6):1965–84. doi:10.1007/s10163-020-01081-8.
  • Jiang, Y., X. Zhang, Y. Rong, and Z. Zhang. 2014. A multimodal location and routing model for hazardous materials transportation based on multi-commodity flow model. Procedia Soc. Behav. Sci. 138:791–99. doi:10.1016/j.sbspro.2014.07.262.
  • Koo, J. K., H. S. Shin, and H. C. Yoo. 1991. Multi-objective siting planning for a regional hazardous waste treatment center. Waste Manage. Res. 9 (3):205–18. doi:10.1177/0734242X9100900128.
  • Koohathongsumrit, N., and P. Luangpaiboon. 2020. Multi-objective risk assessment management via zero-one desirability programming model: Thailand-Cambodia beverage logistics solutions. In ACM international conference proceeding series, 144–48. Tokyo, Japan.
  • Krajewski, L. J., L. P. Ritzman, and M. K. Malhotra. 2007. Operations management, processes, and value chains. 8th ed. New Delhi: Prentice-Hall.
  • Laurent, A., I. Bakas, J. Clavreul, A. Bernstad, M. Niero, E. Gentil, M. Z. Hauschild, and T. H. Christensen. 2014. Review of LCA studies of solid waste management systems–part I: Lessons learned and perspectives. Waste Manage. 34 (3):573–88. doi:10.1016/j.wasman.2013.10.045.
  • Li, L., S. Wang, Y. T. Lin, W. T. Liu, and T. Chi. 2015. A covering model application on Chinese industrial hazardous waste management based on an integer program method. Ecol. Indic. 51:237–43. doi:10.1016/j.ecolind.2014.05.001.
  • Luangpaiboon, P. 2015. Evolutionary elements on composite ascent algorithm for multiple response surface optimisation. J. Intell. Manuf. 26 (3):539–52. doi:10.1007/s10845-013-0813-3.
  • Ma, C., W. Hao, R. He, and B. Moghimi. 2018. A multiobjective route robust optimization model and algorithm for hazmat transportation. Discrete Dyn. Nat. Soc. 2018:1–12. Article No. 2916391. doi:10.1155/2018/2916391.
  • Merkhofer, M. L., and R. L. Keeney. 1987. A multiattribute utility analysis of alternative sites for the disposal of nuclear waste. Risk Anal. 7 (2):173–94. doi:10.1111/j.1539-6924.1987.tb00981.x.
  • Morrissey, A. J., and J. Browne. 2004. Waste management models and their application to sustainable waste management. Waste Manage. 24 (3):297–308. doi:10.1016/j.wasman.2003.09.005.
  • Noche, B., F. A. Rhoma, T. Chinakupt, and M. Jawale. 2010. Optimization model for solid waste management system network design case study. In Proceedings of international conference on computers and industrial engineering 2010, 230–36. Singapore.
  • Olusina, J. O., and D. O. Shyllon. 2014. Suitability analysis in determining optimal landfill location using Multi-Criteria Evaluation (MCE), GIS & remote sensing. Int. J. Comput. Eng. Res. 4 (6):2250–3005.
  • Owen, S. H., and M. S. Daskin. 1998. Strategic facility location: A review. Eur. J. Oper. Res. 11 (3):423–47. doi:10.1016/S0377-2217(98)00186-6.
  • Plastria, F. 1997. Profit maximising single competitive facility location in the plane. Stud. Locational Anal. 11:115–26.
  • Pourhejazy, P., D. Zhang, Q. Zhu, F. Wei, and S. Song. 2021. Integrated E-waste transportation using capacitated general routing problem with time-window. Transp. Res. Part E 145:Article No. 102169. doi:10.1016/j.tre.2020.102169.
  • Rabbani, M., R. Heidari, and R. Yazdanparast. 2019. A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. Eur. J. Oper. Res. 272 (3):945–61. doi:10.1016/j.ejor.2018.07.024.
  • Raeisi, D., and S. J. Ghoushchi. 2022. A robust fuzzy multi-objective location-routing problem for hazardous waste under uncertain conditions. Appl. Intell. doi:10.1007/s10489-022-03334-5.
  • Rathore, P., S. P. Sarmah, and A. Singh. 2019. Location–allocation of bins in urban solid waste management: A case study of Bilaspur city, India. Environ. Dev. Sustainable 22 (4):3309–31. doi:10.1007/s10668-019-00347-y.
  • Réquia, W. J., H. L. Roig, and P. Koutrakis. 2015. A spatial multicriteria model for determining air pollution at sample locations. J. Air Waste Manage. Assoc. 65 (2):232–43. doi:10.1080/10962247.2014.971976.
  • Roe, A. G., and W. L. Winston. 1997. LINDO/LINGO/GINO: Optimization software. Chicago: LINDO Systems, Inc.
  • Saaty, T. L. 1980. The analytic hierarchy process. New York: McGraw-Hill.
  • Samanlioglu, F. 2013. A multi-objective mathematical model for the industrial hazardous waste location-routing problem. Eur. J. Oper. Res. 226 (2):332–40. doi:10.1016/j.ejor.2012.11.019.
  • Stowers, C. L., and U. S. Palekar. 1993. Location models with routing considerations for a single obnoxious center. Transp. Sci. 27 (4):350–62. doi:10.1287/trsc.27.4.350.
  • Sule, D. R. 2001. Logistics of facility location and allocation. New York: Marcel Dekker AG.
  • U.S. Environmental Protection Agency. 2009. Household Hazardous Waste (HHW). Accessed May 7, 2021. https://www.epa.gov/hw/learn-basics-hazardous-waste#hwid.
  • World Health Organization. 2020. Global recommendations on physical activity for health. Geneva: World Health Organization.
  • Xin, C., J. Wang, Z. Wang, C. Wu, M. Nawaz, and S. Tsai. 2021. Reverse logistics research of municipal hazardous waste: A literature review. Environ. Dev. Sustainable doi:10.1007/s10668-021-01526-6.
  • Yilmaz, O., B. Y. Kara, and U. Yetis. 2017. Hazardous waste management system design under population and environmental impact considerations. J. Environ. Manage. 203:720–31. doi:10.1016/j.jenvman.2016.06.015.
  • Yu, H., and W. D. Solvang. 2017. A carbon-constrained stochastic optimization model with augmented multi-criteria scenario-based risk-averse solution for reverse logistics network design under uncertainty. J. Clean. Prod. 164:1248–67. doi:10.1016/j.jclepro.2017.07.066.
  • Yu, H., X. Sun, W. D. Solvang, G. Laporte, and C. K. M. Lee. 2020. A stochastic network design problem for hazardous waste management. J. Clean. Prod. 277: Article No. 123566277. doi:10.1016/j.jclepro.2020.123566.
  • Zhao, J., L. Huang, D. H. Lee, and Q. Peng. 2016. Improved approaches to the network design problem in regional hazardous waste management systems. Transp. Res. Part E Logist. Transp. Rev. 88:52–75. doi:10.1016/j.tre.2016.02.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.