1,074
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Quantifying residual elemental carbon by thermal-optical analysis using an extended IMPROVE_A protocol with higher maximum temperature

ORCID Icon, , &
Pages 1316-1325 | Received 11 Apr 2022, Accepted 19 Aug 2022, Published online: 23 Sep 2022

References

  • Anon. AR5 climate change 2014: Synthesis report — IPCC, [online] https://www.ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf.
  • Birch, M. E., and R. A. Cary. 1996. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25 (3):221–41. doi:10.1080/02786829608965393.
  • Bond, T. C., and R. W. Bergstrom. 2006. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40 (1):27–67. doi:10.1080/02786820500421521.
  • Brandelet, B., C. Rose, C. Rogaume, and Y. Rogaume. 2017. Investigation of the organic carbon ratio analysis on particles from biomass combustion and its evolution in three generations of firewood stoves. Biomass Bioenergy 99:106–15. doi:10.1016/j.biombioe.2017.03.002.
  • Briggs, N. L., and C. M. Long. 2016. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States. Atmos. Environ. 144:409–27. doi:10.1016/j.atmosenv.2016.09.002.
  • Chan, T. W., L. Huang, K. Banwait, W. Zhang, D. Ernst, X. Wang, J. G. Watson, J. C. Chow, M. Green, C. I. Czimczik, et al. 2019. Inter-comparison of elemental and organic carbon mass measurements from three North American national long-term monitoring networks at a co-located site. Atmos. Meas. Tech. 12:4543–60. doi:10.5194/amt-12-4543-2019.
  • Cheng, Y., K. B. He, F. K. Duan, Z. Y. Du, M. Zheng, and Y. L. Ma. 2014. Ambient organic carbon to elemental carbon ratios: Influence of the thermal-optical temperature protocol and implications. Sci. Total Environ. 468-469:1103–11. doi:10.1016/j.scitotenv.2013.08.084.
  • Chow, J. C., J. G. Watson, L.-W. A. Chen, M. C. O. Chang, N. F. Robinson, D. Trimble, and S. Kohl. 2007. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manage. Assoc. 57 (9):1014–23. doi:10.3155/1047-3289.57.9.1014.
  • Chow, J. C., J. G. Watson, D. Crow, D. H. Lowenthal, and T. Mrrifield. 2001. Comparison of IMPROVE and NIOSH carbon measurements. Aerosol. Sci. Technol 34:23–34. doi:10.1080/027868201300081923.
  • Chow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier, and R. G. Purcell. 1993. The DRI thermal/optical reflectance carbon analysis system: Description, evaluation and applications in U.S. Air quality studies. Atmos. Environ. 27A (8):1185–201. doi:10.1016/0960-1686(93)90245-T.
  • DRI. 2015. SOP 2-226r1: DRI model 2015 multiwavelength thermal/optical carbon analysis (TOR/TOT) of aerosol filter samples - method IMPROVE_A. Reno, NV: Desert Research Institute. http://vista.cira.colostate.edu/improve/wp-content/uploads/2016/07/IMPROVEA_Model2015_2-226r1_20160125final.pdf.
  • Fung, K. 1990. Particulate carbon speciation by MnO2 oxidation. Aerosol Sci. Technol. 12 (1):122–27. doi:10.1080/02786829008959332.
  • Glassman, I., O. Nishida, and G. Sidebotham. 1994. Critical temperatures of soot formation. In Soot formation in combustion: Mechanisms and models, ed. H. Bockhorn, 316–24. New York: Springer-Verlag.
  • Hand, J. L., B. A. Schichtel, M. Pitchford, W. C. Malm, and N. H. Frank. 2012. Seasonal composition of remote and urban fine particulate matter in the United States. J. Geophys. Res. 117:DO5209. doi:10.1029/2011JD017122.
  • Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill. 1994. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophyiscal Res. 99 (D1):1347–70. doi:10.1029/93JD02916.
  • NIOSH. 2016. Method 5040 Issue 4: Elemental carbon (diesel exhaust). In NIOSH manual of analytical methods (NMAM), 5th ed., DL-1–DL-41. Cincinnati: National Institute of Occupational Safety and Health.
  • Panteliadis, P., T. Hafkenscheid, B. Cary, E. Diapouli, A. Fischer, O. Favez, P. Quincey, M. Viana, R. Hitzenberger, R. Vecchi, et al. 2015. ECOC comparison exercise with identical thermal protocols after temperature offset correction - instrument diagnostics by in-depth evaluation of operational parameters. Atmos. Meas. Tech. 8:779–92. doi:10.5194/amt-8-779-2015.
  • Peterson, M. R., and M. H. Richards. 2002. Thermal-optical-transmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in PM2.5 by the EPA/NIOSH method, Presentation at the Symposium on Air Quality Measurement Methods and Technology in San Francisco, CA, 13–15 November 2002, J. Air Waste Manage. Assoc., Pittsburgh, PA, USA, Session 5, Paper #83.
  • Pope, C. A., and D. W. Dockery. 2006. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manage. Assoc. 56 (6):709–42. doi:10.1080/10473289.2006.10464485.
  • Schauer, J. J., B. T. Mader, J. T. DeMinter, G. Heidemann, M. S. Bae, J. H. Seinfeld, R. C. Flagan, R. A. Cary, D. Smith, B. J. Huebert, et al. 2003. ACE-Asia intercomparison of a thermal-optical method for the determination of particle-phase organic and elemental carbon. Environ. Sci. Technol. 37 (5):993–1001. doi:10.1021/es020622f.
  • Schmid, H. P., L. Laskus, H. J. Abraham, U. Baltensperger, V. M. H. Lavanchy, M. Bizjak, P. Burba, H. Cachier, D. Crow, J. C. Chow, et al. 2001. Results of the “Carbon conference” international aerosol carbon round robin test: Stage 1. Atmos. Environ. 35 (12):2111–21. doi:10.1016/S1352-2310(00)00493-3.
  • Solomon, P. A., D. Crumpler, J. B. Flanagan, R. K. M. Jayanty, E. E. Rickman, and C. E. McDade. 2014. U.S. National PM2.5 chemical speciation monitoring networks—CSN and IMPROVE: Description of networks. J. Air Waste Manage. Assoc. 64 (12):1410–38. doi:10.1080/10962247.2014.956904.
  • Spada, N. J., and N. P. Hyslop. 2018. Comparison of elemental and organic carbon measurements between IMPROVE and CSN before and after method transitions. Atmos. Environ. 178:173–80. doi:10.1016/j.atmosenv.2018.01.043.
  • Subramanian, R., A. Y. Khlystov, and A. L. Robinson. 2006. Effect of peak inert-mode temperature on elemental carbon measured using thermal-optical analysis. Aerosol Sci. Technol. 40:763–80. doi:10.1080/02786820600714403.
  • UCD. 2019. CSN standard operating procedure #402: Thermal/optical reflectance (TOR) carbon analysis using a sunset carbon analyzer. Davis: University of California. https://www.epa.gov/sites/production/files/2019-11/documents/ucd_sop402_tor_carbon_analysis_final_srsedit.pdf.
  • Watson, J. G. 2002. Visibility: Science and regulation. J. Air Waste Manag. Assoc. 52 (6):628–713. doi:10.1080/10473289.2002.10470813.
  • Watson, J. G., J. C. Chow, and L.-W. A. Chen. 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5 (1):65–102. 205AD. doi:10.4209/aaqr.2005.06.0006.
  • Wu, C., X. H. H. Huang, W. M. Ng, S. M. Griffith, and J. Z. Yu. 2016. Inter-comparison of NIOSH and IMPROVE protocols for OC and EC determination: Implications for inter-protocol data conversion. Atmos. Meas. Tech. 9:4547–60. doi:10.5194/amt-9-4547-2016.
  • Zhang, X., K. Trzepla, W. White, S. Raffuse, and N. P. Hyslop. 2021. Intercomparison of thermal–optical carbon measurements by Sunset and Desert Research Institute (DRI) analyzers using the IMPROVE_A protocol. Atmos. Meas. Tech. 14:3217–31. doi:10.5194/amt-14-3217-2021.