1,756
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Tubing material considerably affects measurement delays of gas-phase oxygenated per- and polyfluoroalkyl substances

ORCID Icon, ORCID Icon &
Pages 335-344 | Received 08 Dec 2022, Accepted 19 Jan 2023, Published online: 12 May 2023

References

  • Bertram, T. H., J. R. Kimmel, T. A. Crisp, O. S. Ryder, R. L. N. Yatavelli, J. A. Thornton, M. J. Cubison, M. Gonin, and D. R. Worsnop. 2011. A field-deployable, chemical ionization time-of-flight mass spectrometer. Atmos. Meas. Tech. 4 (7):1471–79. doi:10.5194/amt-4-1471-2011.
  • Bhhatarai, B., and P. Gramatica. 2011. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals. Environ. Sci. Technol. 45 (19):8120–28. doi:10.1021/es101181g.
  • Brophy, P., and D. K. Farmer. 2015. A switchable reagent ion high resolution time-of-flight chemical ionization mass spectrometer for real-time measurement of gas phase oxidized species: Characterization from the 2013 southern oxidant and aerosol study. Atmos. Meas. Tech. 8 (7):2945–59. doi:10.5194/amt-8-2945-2015.
  • Buck, R. C., J. Franklin, U. Berger, J. M. Conder, I. T. Cousins, P. De Voogt, A. A. Jensen, K. Kannan, S. A. Mabury, and S. P. van Leeuwen. 2011. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 7 (4):513–41. doi:10.1002/ieam.258.
  • Chemical & Engineering News. 2010. Fluorochemicals Go Short. Accessed July 14, 2022. https://cen.acs.org/articles/88/i5/Fluorochemicals-Short.html
  • Chemical & Engineering News. 2018. What’s GenX still doing in the water downstream of a Chemours plant? Accessed July 14, 2022. https://cen.acs.org/articles/96/i7/whats-genx-still-doing-in-the-water-downstream-of-a-chemours-plant.html
  • D’Ambro, E. L., H. O. Pye, J. O. Bash, J. Bowyer, C. Allen, C. Efstathiou, R. C. Gilliam, L. Reynolds, K. Talgo, and B. N. Murphy. 2021. Characterizing the air emissions, transport, and deposition of per-and polyfluoroalkyl substances from a fluoropolymer manufacturing facility. Environ. Sci. Technol. 55 (2):862–70. doi:10.1021/acs.est.0c06580.
  • Davis, K. L., M. D. Aucoin, B. S. Larsen, M. A. Kaiser, and A. S. Hartten. 2007. Transport of ammonium perfluorooctanoate in environmental media near a fluoropolymer manufacturing facility. Chemosphere 67 (10):2011–19. doi:10.1016/j.chemosphere.2006.11.049.
  • Deming, B. L., D. Pagonis, X. Liu, D. A. Day, R. Talukdar, J. E. Krechmer, J. A. de Gouw, J. L. Jimenez, and P. J. Ziemann. 2019. Measurements of delays of gas-phase compounds in a wide variety of tubing materials due to gas–wall interactions. Atmos. Meas. Tech. 12 (6):3453–61. doi:10.5194/amt-12-3453-2019.
  • De Silva, A. O., J. M. Armitage, T. A. Bruton, C. Dassuncao, W. Heiger-bernays, X. C. Hu, A. Kärrman, B. Kelly, C. Ng, and A. Robuck. 2021. PFAS exposure pathways for humans and wildlife: A synthesis of current knowledge and key gaps in understanding. Environ. Toxicol. Chem. 40 (3):631–57. doi:10.1002/etc.4935.
  • Ellis, D. A., J. W. Martin, A. O. De Silva, S. A. Mabury, M. D. Hurley, M. P. Sulbaek Andersen, and T. J. Wallington. 2004. Degradation of fluorotelomer alcohols: A likely atmospheric source of perfluorinated carboxylic acids. Environ. Sci. Technol. 38 (12):3316–21. doi:10.1021/es049860w.
  • Espartero, L. J. L., M. Yamada, J. Ford, G. Owens, T. Prow, and A. Juhasz. 2022. Health-related toxicity of emerging per-and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environ. Res. 212:113431. doi:10.1016/j.envres.2022.113431.
  • Fenton, S. E., A. Ducatman, A. Boobis, J. C. DeWitt, C. Lau, C. Ng, J. S. Smith, and S. M. Roberts. 2021. Per-and polyfluoroalkyl substance toxicity and human health review: Current state of knowledge and strategies for informing future research. Environ. Toxicol. Chem. 40 (3):606–30. doi:10.1002/etc.4890.
  • Gaballah, S., A. Swank, J. R. Sobus, X. M. Howey, J. Schmid, T. Catron, J. McCord, E. Hines, M. Strynar, and T. Tal. 2020. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ. Health Perspect. 128 (4):047005. doi:10.1289/EHP5843.
  • Galloway, J. E., A. V. Moreno, A. B. Lindstrom, M. J. Strynar, S. Newton, A. A. May, and L. K. Weavers. 2020. Evidence of air dispersion: HFPO–DA and PFOA in Ohio and West Virginia surface water and soil near a fluoropolymer production facility. Environ. Sci. Technol. 54 (12):7175–84. doi:10.1021/acs.est.9b07384.
  • Glüge, J., M. Scheringer, I. T. Cousins, J. C. DeWitt, G. Goldenman, D. Herzke, R. Lohmann, C. A. Ng, X. Trier, and Z. Wang. 2020. An overview of the uses of per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Process Impacts 22 (12):2345–73. doi:10.1039/D0EM00291G.
  • Gremmel, C., T. Frömel, and T. P. Knepper. 2016. Systematic determination of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in outdoor jackets. Chemosphere 160:173–80. doi:10.1016/j.chemosphere.2016.06.043.
  • Kirkwood, K. I., J. Fleming, H. Nguyen, D. M. Reif, E. S. Baker, and S. M. Belcher. 2022. Utilizing pine needles to temporally and spatially profile per-and polyfluoroalkyl substances (PFAS). Environ. Sci. Technol. 56 (6):3441–51. doi:10.1021/acs.est.1c06483.
  • Kotthoff, M., J. Müller, H. Jürling, M. Schlummer, and D. Fiedler. 2015. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environ. Sci. Pollut. Res. 22 (19):14546–59. doi:10.1007/s11356-015-4202-7.
  • Krechmer, J. E., D. Pagonis, P. J. Ziemann, and J. L. Jimenez. 2016. Quantification of gas-wall partitioning in Teflon environmental chambers using rapid bursts of low-volatility oxidized species generated in situ. Environ. Sci. Technol. 50 (11):5757–65. doi:10.1021/acs.est.6b00606.
  • Krusic, P. J., A. A. Marchione, F. Davidson, M. A. Kaiser, C.-P. C. Kao, R. E. Richardson, M. Botelho, R. L. Waterland, and R. C. Buck. 2005. Vapor pressure and intramolecular hydrogen bonding in fluorotelomer alcohols. J. Phys. Chem. A. 109 (28):6232–41. doi:10.1021/jp0502961.
  • Kwok, K. Y., E. Yamazaki, N. Yamashita, S. Taniyasu, M. B. Murphy, Y. Horii, G. Petrick, R. Kallerborn, K. Kannan, and K. Murano. 2013. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: Implications for sources. Sci. Total Environ. 447:46–55. doi:10.1016/j.scitotenv.2012.10.091.
  • Langer, V., A. Dreyer, and R. Ebinghaus. 2010. Polyfluorinated compounds in residential and nonresidential indoor air. Environ. Sci. Technol. 44 (21):8075–81. doi:10.1021/es102384z.
  • Lee, B. H., F. D. Lopez-Hilfiker, C. Mohr, T. Kurten, D. R. Worsnop, and J. A. Thornton. 2014. An iodide-adduct high-resolution time-of-flight chemical-ionization mass spectrometer: Application to atmospheric inorganic and organic compounds. Environ. Sci. Technol. 48 (11):6309–17. doi:10.1021/es500362a.
  • Lesmeister, L., F. T. Lange, J. Breuer, A. Biegel-Engler, E. Giese, and M. Scheurer. 2021. Extending the knowledge about PFAS bioaccumulation factors for agricultural plants–a review. Sci. Total Environ. 766:142640. doi:10.1016/j.scitotenv.2020.142640.
  • Liu, X., B. Deming, D. Pagonis, D. A. Day, B. B. Palm, R. Talukdar, J. M. Roberts, P. R. Veres, J. E. Krechmer, and J. A. Thornton. 2019. Effects of gas–wall interactions on measurements of semivolatile compounds and small polar molecules. Atmos. Meas. Tech. 12 (6):3137–49. doi:10.5194/amt-12-3137-2019.
  • Liu, X., Z. Guo, E. E. Folk IV, and N. F. Roache. 2015. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment. Chemosphere 129:81–86. doi:10.1016/j.chemosphere.2014.06.012.
  • Morales-McDevitt, M. E., J. Becanova, A. Blum, T. A. Bruton, S. Vojta, M. Woodward, and R. Lohmann. 2021. The air that we breathe: Neutral and volatile PFAS in indoor air. Environ. Sci. Technol. Lett. 8 (10):897–902. doi:10.1021/acs.estlett.1c00481.
  • Nakayama, S. F., M. Yoshikane, Y. Onoda, Y. Nishihama, M. Iwai-Shimada, M. Takagi, Y. Kobayashi, and T. Isobe. 2019. Worldwide trends in tracing poly-and perfluoroalkyl substances (PFAS) in the environment. TrAc. Trends. Anal. Chem. 121:115410. doi:10.1016/j.trac.2019.02.011.
  • Pagonis, D., J. E. Krechmer, J. de Gouw, J. L. Jimenez, and P. J. Ziemann. 2017. Effects of gas–wall partitioning in Teflon tubing and instrumentation on time-resolved measurements of gas-phase organic compounds. Atmos. Meas. Tech. 10 (12):4687–96. doi:10.5194/amt-10-4687-2017.
  • Pickard, H. M., A. S. Criscitiello, C. Spencer, M. J. Sharp, D. C. Muir, A. O. De Silva, and C. J. Young. 2018. Continuous non-marine inputs of per-and polyfluoroalkyl substances to the High Arctic: A multi-decadal temporal record. Atmos. Chem. Phys. 18 (7):5045–58. doi:10.5194/acp-18-5045-2018.
  • Riedel, T. P., J. R. Lang, M. J. Strynar, A. B. Lindstrom, and J. H. Offenberg. 2019. Gas-phase detection of fluorotelomer alcohols and other oxygenated per-and polyfluoroalkyl substances by chemical ionization mass spectrometry. Environ. Sci. Technol. Lett. 6 (5):289–93. doi:10.1021/acs.estlett.9b00196.
  • Riedel, T. P., M. A. G. Wallace, E. P. Shields, J. V. Ryan, C. W. Lee, and W. P. Linak. 2021. Low temperature thermal treatment of gas-phase fluorotelomer alcohols by calcium oxide. Chemosphere 272:129859. doi:10.1016/j.chemosphere.2021.129859.
  • Sauer, J. S., R. Simkovsky, A. N. Moore, L. Camarda, S. L. Sherman, K. A. Prather, and R. S. Pomeroy. 2021. Continuous measurements of volatile gases as detection of algae crop health. Proc. Natl. Acad. Sci. U.S.A. 118 (40):e2106882118. doi:10.1073/pnas.2106882118.
  • Schlummer, M., L. Gruber, D. Fiedler, M. Kizlauskas, and J. Müller. 2013. Detection of fluorotelomer alcohols in indoor environments and their relevance for human exposure. Environ. Int. 57-58:42–49. doi:10.1016/j.envint.2013.03.010.
  • Shoeib, M., T. Harner, B. H. Wilford, K. C. Jones, and J. Zhu. 2005. Perfluorinated sulfonamides in indoor and outdoor air and indoor dust: Occurrence, partitioning, and human exposure. Environ. Sci. Technol. 39 (17):6599–606. doi:10.1021/es048340y.
  • Sunderland, E. M., X. C. Hu, C. Dassuncao, A. K. Tokranov, C. C. Wagner, and J. G. Allen. 2019. A review of the pathways of human exposure to poly-and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29 (2):131–47. doi:10.1038/s41370-018-0094-1.
  • Titaley, I. A., J. Khattak, J. Dong, C. I. Olivares, B. DiGuiseppi, C. C. Lutes, and J. A. Field. 2022. Neutral Per-and Polyfluoroalkyl Substances, Butyl Carbitol, and Organic Corrosion Inhibitors in Aqueous Film-Forming Foams: Implications for Vapor Intrusion and the Environment. Environ. Sci. Technol. doi:10.1021/acs.est.2c02349
  • U.S. Congress. 2021. H.R.2467 - PFAS Action Act of 2021. Accessed July 14, 2022. https://www.congress.gov/bill/117th-congress/house-bill/2467?q=%7B
  • U.S. EPA. 2021. Contaminant Candidate List (CCL) and Regulatory Determination. Accessed July 14, 2022. https://www.epa.gov/ccl/regulatory-determination-4
  • U.S. EPA. 2018. Human Health Toxicity Values for Hexafluoropropylene Oxide (HFPO) Dimer Acid and Its Ammonium Salt (CASRN 13252-13-6 and CASRN 62037-80-3) Also Known as “GenX Chemicals”.
  • U.S. EPA. 2022. Drinking Water Health Advisory: Hexafluoropropylene Oxide (HFPO) Dimer Acid (CASRN 13252-13-6) and HFPO Dimer Acid Ammonium Salt ( CASRN 62037-80-3), Also Known as “GenX Chemicals”.
  • Veres, P., J. M. Roberts, I. R. Burling, C. Warneke, J. de Gouw, and R. J. Yokelson. 2010. Measurements of gas-phase inorganic and organic acids from biomass fires by negative-ion proton-transfer chemical-ionization mass spectrometry. J. Geophys. Res.: Atmos 115 (D23). doi:10.1029/2010JD014033.
  • Veres, P., J. M. Roberts, C. Warneke, D. Welsh-Bon, M. Zahniser, S. Herndon, R. Fall, and J. de Gouw. 2008. Development of negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS) for the measurement of gas-phase organic acids in the atmosphere. Int. J. Mass. Spectrom 274 (1–3):48–55. doi:10.1016/j.ijms.2008.04.032.
  • Wang, Z., I. T. Cousins, M. Scheringer, R. C. Buck, and K. Hungerbühler. 2014. Global emission inventories for C4–C14 perfluoroalkyl carboxylic acid (PFCA) homologues from 1951 to 2030, Part I: Production and emissions from quantifiable sources. Environ. Int. 70:62–75. doi:10.1016/j.envint.2014.04.013.