254
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Mineral extraction from asbestos-containing waste (ACW) and changes in its morphology during treatment with ammonium salts

, &
Pages 285-294 | Received 11 Aug 2022, Accepted 30 Jan 2023, Published online: 06 Mar 2023

References

  • Arce Ferrufino, G. L. A., S. Okamoto, J. C. Dos Santos, J. A. de Carvalho, I. Avila, C. M. Romero Luna, and T. Gomes Soares Neto. 2018. CO2 sequestration by pH-swing mineral carbonation based on HCl/NH4OH system using iron-rich lizardite 1T. J. CO2 Util. 24:164–73.
  • Belardi, G., and L. Piga. 2013. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products. Thermochim. Acta 573:220–28. doi:10.1016/j.tca.2013.08.019.
  • Candela, P. A., C. D. Crummett, D. J. Earnest, M. R. Frank, and A. G. Wylie. 2007. Low-pressure decomposition of chrysotile as a function of time and temperature. Am. Mineral. 92 (10):1704–13. doi:10.2138/am.2007.2559.
  • David, S. R., D. Ihiawakrim, R. Regis, and V. A. Geoffroy. 2020a. Efficiency of pyoverdines in iron removal from flocking asbestos waste: An innovative bacterial bioremediation strategy. J. Hazard. Mater. 394:122532.
  • David, S. R., D. Ihiawakrim, R. Regis, and V. A. Geoffroy. 2020b. Iron removal from raw asbestos by siderophores-producing Pseudomonas. J. Hazard. Mater. 385:121563.
  • David, S. R., A. Jaouen, D. Ihiawakrim, and V. A. Geoffroy. 2021. Biodeterioration of asbestos cement by siderophore-producing Pseudomonas. J. Hazard. Mater. 403:123699. doi:10.1016/j.jhazmat.2020.123699.
  • Fujishige, M., R. Sato, A. Kuribara, I. Karasawa, and A. Kojima. 2006. Low-temperature decomposition of sprayed-on asbestos. J. Ceram. Soc. Japan 114 (12):1133–37.
  • Fusi, L., A. Monti, and M. Primicerio. 2012. Determining calcium carbonate neutralization kinetics from experimental laboratory data. J. Math. Chem. 50 (9):2492–511. doi:10.1007/s10910-012-0045-3.
  • Gadikota, G., C. Natali, C. Boschi, and A. H. Park. 2014. Morphological changes during enhanced carbonation of asbestos containing material and its comparison to magnesium silicate minerals. J. Hazard. Mater. 264:42–52. doi:10.1016/j.jhazmat.2013.09.068.
  • Gandolfi, N. B., A. F. Gualtieri, S. Pollastri, E. Tibaldi, and F. Belpoggi. 2016. Assessment of asbestos body formation by high resolution FEG-SEM after exposure of Sprague-Dawley rats to chrysotile, crocidolite, or erionite. J. Hazard. Mater. 306:95–104. doi:10.1016/j.jhazmat.2015.11.050.
  • Goodman, A., G. Underwood, and V. Grassian. 2000. A laboratory study of the heterogeneous reaction of nitric acid on calcium carbonate particles. J. Geophys. Res. 105 (D23):29053–64.
  • Horikoshi, S., T. Sumi, S. Ito, R. Dillert, K. Kashimura, N. Yoshikawa, M. Sato, and N. Shinohara. 2014. Microwave-driven asbestos treatment and its scale-up for use after natural disasters. Environ. Sci. Technol. 48 (12):6882–90.
  • ILO (International Labor Organization) C162 - Asbestos Convention. 1986.
  • Kazan-Allen, L. 2003. The asbestos war. Int. J. Occup. Environ. Health. 9 (3):173–93. doi:10.1179/oeh.2003.9.3.173.
  • Kusiorowski, R., T. Zaremba, A. Gerle, J. Piotrowski, W. Simka, and J. Adamek. 2015. Study on the thermal decomposition of crocidolite asbestos. J Therm Anal Calorim 120 (3):1585–95.
  • Kusiorowski, R., T. Zaremba, J. Piotrowski, and J. Adamek. 2012. Thermal decomposition of different types of asbestos. J. Therm. Anal. Calorim. 109 (2):693–704.
  • Kusiorowski, R., T. Zaremba, J. Piotrowski, and A. Gerle. 2013. Thermal decomposition of asbestos-containing materials. J. Therm. Anal. Calorim. 113 (1):179–88.
  • Kusiorowski, R., T. Zaremba, J. Piotrowski, and J. Podwórny. 2015. Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture. J. Mater. Sci. 50 (20):6757–67.
  • Lemos, B. R. S., E. A. R. Soares, A. P. C. Teixeira, J. D. Ardisson, L. E. Fernandez-Outon, C. C. Amorim, R. M. Lago, and F. C. C. Moura. 2016. Growth of carbon structures on chrysotile surface for organic contaminants removal from wastewater. Chemosphere 159:602–09.
  • Maletaškić, J., N. Stanković, N. Daneu, B. Babić, M. Stoiljković, K. Yoshida, and B. Matović. 2017. Acid leaching of natural chrysotile asbestos to mesoporous silica fibers. Phys. Chem. Miner. 45:343–351.
  • Marian, N. M., G. Giorgetti, C. Magrini, G. C. Capitani, L. Galimberti, A. Cavallo, R. Salvini, C. Vanneschi, and C. Viti. 2021. From hazardous asbestos containing wastes (ACW) to new secondary raw material through a new sustainable inertization process: A multimethodological mineralogical study. J. Hazard. Mater. 413:125419. doi:10.1016/j.jhazmat.2021.125419.
  • McCutcheon, J., G. M. Dipple, S. A. Wilson, and G. Southam. 2015. Production of magnesium-rich solutions by acid leaching of chrysotile: A precursor to field-scale deployment of microbially enabled carbonate mineral precipitation. Chem. Geol. 413:119–31.
  • McCutcheon, J., C. Turvey, S. Wilson, J. Hamilton, and G. Southam. 2017. Experimental deployment of microbial mineral carbonation at an asbestos mine: Potential applications to carbon storage and tailings stabilization. Minerals 7 (10):191.
  • McCutcheon, J., S. A. Wilson, and G. Southam. 2016. Microbially accelerated carbonate mineral precipitation as a strategy for in situ carbon sequestration and rehabilitation of asbestos mine sites. Environ. Sci. Technol. 50 (3):1419–27. doi:10.1021/acs.est.5b04293.
  • Mymrin, V., P. Presotto, K. Alekseev, M. A. Avanci, P. H. B. Rolim, V. Petukhov, A. Taskin, E. Gidarakos, A. Valouma, and G. Yu. 2020. Application of hazardous serpentine rocks’ extraction wastes in composites with glass waste and clay-sand mix to produce environmentally clean construction materials. Constr. Build. Mater. 234:117319.
  • Naidu, S.; G. W. Scherer. 2012. Development of hydroxyapatite films to reduce the dissolution rate of marble. Proceedings of 12th International Congress on Deterioration and Conservation of Stone, 1–9, New York, NY.
  • Nam, S. N., S. Jeong, and H. Lim. 2014. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid. J. Hazard. Mater. 265:151–57. doi:10.1016/j.jhazmat.2013.11.004.
  • Paolini, V., L. Tomassetti, M. Segreto, D. Borin, F. Liotta, M. Torre, and F. Petracchini. 2018. Asbestos treatment technologies. J. Mater. Cycles Waste Manag. 21 (2):205–26. doi:10.1007/s10163-018-0793-7.
  • Pawelczyk, A., F. Bozek, K. Grabas, and J. Checmanowski. 2017. Chemical elimination of the harmful properties of asbestos from military facilities. Waste Manag. 61:377–85.
  • Publishing, R. 2013. Merck index. 15th ed. Whitehouse Station, N.J.: Royal Society of Chemistry.
  • Spasiano, D., and F. Pirozzi. 2017. Treatments of asbestos containing wastes. J. Environ. Manage. 204 (Pt 1):82–91.
  • Valouma, A., A. Verganelaki, I. Tetoros, P. Maravelaki-Kalaitzaki, and E. Gidarakos. 2017. Magnesium oxide production from chrysotile asbestos detoxification with oxalic acid treatment. J. Hazard. Mater. 336:93–100. doi:10.1016/j.jhazmat.2017.04.019.
  • Vergani, F., L. Galimberti, N. Marian, G. Giorgetti, C. Viti, and G. Capitani. 2022. Thermal decomposition of cement–asbestos at 1100 °C: How much “safe” is “safe”? J. Mater. Cycles Waste Manag. 24 (1):297–310.
  • Znamenáčková, I., S. Dolinská, M. Lovás, S. Hredzák, M. Matik, J. Tomčová, and V. Čablík. 2016. Application of microwave energy at treatment of asbestos cement (eternit). IOP Conf. Ser. 44:052023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.