239
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Experimental study and kinetic model analysis on photothermal catalysis of formaldehyde by manganese and cerium based catalytic materials

, , , &
Pages 345-361 | Received 12 Jul 2022, Accepted 19 Jan 2023, Published online: 12 May 2023

References

  • Armaroli, N., and V. Balzani. 2007. The future of energy supply: Challenges and opportunities. Angew. Chem. Int. Ed. 46 (1–2):52–66. doi:10.1002/anie.200602373.
  • Cai, S.-C., J.-J. Li, E.-Q. Yu, X. Chen, J. Chen, and H.-P. Jia. 2018. Strong photothermal effect of plasmonic Pt nanoparticles for efficient degradation of volatile organic compounds under solar light irradiation. Acs Appl. Nano Mater. 1 (11):6368–77. doi:10.1021/acsanm.8b01578.
  • Chen, F.N., H.M. Zhang, W.H. Liang, Yang, X.D, and X.D. Yang. Analysis of the influence of temperature on material pollution emission and formaldehyde concentration in indoor air. Build. Sci. 2019 (6):5. doi:10.13614/j.cnki.11-1962/tu.2019.06.03.
  • Chen, Y.C., K.I. Katsumata, Y.H. Chiu, K. Okada, N. Matsushita, and Y.-J. Hsu. 2015. ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal. A Gen. 490:1–9. doi:10.1016/j.apcata.2014.10.055.
  • Chuang, K.T., B. Zhou, and S. Tong. 1994. Kinetics and mechanism of catalytic oxidation of formaldehyde over hydrophobic catalysts. Ind. Eng. Chem. Res. (United States) 33 (7):1680–86. doi:10.1021/ie00031a007.
  • Cui, W.Y., X.Y. Wang, and N.D. Tan. 2020. Research progress on the mechanism of catalytic oxidation of formaldehyde. Fine Chem. 37 (10):1977–85.
  • Dave, P.N., R. Sirach, S. Chaturvedi, R. Thakkar, and M. P. Deshpande. 2022. The catalytic effect of CoCuZnF on the thermal decomposition of 3-nitro-2,4-dihydro-1,2,4-triazol-5-one (NTO) and nanosize NTO. Mater. Lett. X 15:100159. doi:10.1016/j.mlblux.2022.100159.
  • Dave, P.N., R. Sirach, and S. Chaturvedi. 2022. Kinetics of the thermolysis of 3-nitro-2,4-dihydro-3H-1,2,4-triazol-5-one (NTO) and nanosize NTO the presence of nickel-zinc-cobalt ferrite. Int. J. Chem. Kinet. 1–10. doi:10.1002/kin.21603.
  • Dave, P.N., R. Sirach, and M.P. Deshpande. 2022. Evaluating the effect of nanosized CoCuFe2O4 for thermal decomposition of nitrotriazolone high energetic material. Chem. Sel. 7 (32):e202202071. doi:10.1002/slct.202202071.
  • Dave, P.N., R. Sirach, and R. Thakkar. 2022. Thermal decomposition and kinetic investigation of AP and AP based composite solid propellant in the presence of nickel ferrite additive. J. Mater. Res. Technol. 19:4183–96. doi:10.1016/j.jmrt.2022.06.123.
  • Dave, P., R. Sirach, R. Thakkar, M.P. Deshpande, and D.M. Badgujar. 2022. Cobalt copper zinc ferrite: an efficient catalyst for the thermal decomposition of ammonium perchlorate. Combust. Sci. Technol. 1–18. doi:10.1080/00102202.2022.2040997.
  • Deng, Q., X. Yang, and J. S. Zhang. 2009. Study on a new correlation between diffusion coefficient and temperature in porous building materials. Atmos. Environ. 43 (12):2080–83. doi:10.1016/j.atmosenv.2008.12.052.
  • Guo, R.H., H.L. Sun, F. Hu, Y.D. Huang, and Y.Y. Song. Automotive interior materials and interior air pollution. Auto Parts 2018 (11):6.
  • Han, X. 2014. Study on the performance and kinetic model of removing indoor formaldehyde by thermal catalytic oxidation. Tianjin University.
  • Hao, H., Y. Zhang, H. Zhang, and X. Song. 2021. Study on the distribution characteristics and purification effect of formaldehyde in decorated indoors under different ventilation methods. IOP Conf. Ser.: Earth Environ. Sci. 680 (1):012101 (5pp). doi:10.1088/1755-1315/680/1/012101.
  • Hou, S.L. 2017. Analysis of temperature change characteristics of vehicles parked in open air in summer. J. Beijing Polytech. Coll. 16 (1):17–21.
  • Huang, H., Y. Xu, Q. Feng, and D.Y.C. Leung. 2015. Low temperature catalytic oxidation of volatile organic compounds: A review. Catal. Sci. Technol. doi:10.1039/C4CY01733A.
  • Huang, Q., M.T. Bai, C. Ren, G.H. Wang, T. Tao, Y.X. Zhao, and M. D. Chen. 2018. Catalytic oxidation of formaldehyde with Mn-based metal oxide catalysts at room temperature. Chin. Environ. Sci. 38 (1):103–11.
  • Huang, S., J. Xiong, and Y. Zhang. 2015. Impact of temperature on the ratio of initial emittable concentration to total concentration for formaldehyde in building materials: Theoretical correlation and validation. Environ. Sci. Technol. 49 (3):1537–44. doi:10.1021/es5051875.
  • Hu, X., C. Li, Z. Sun, J. Song, and S. Zheng. 2020. Enhanced photocatalytic removal of indoor formaldehyde by ternary heterogeneous BiOCl/TiO2/sepiolite composite under solar and visible light. Build. Environ. 168:168. doi:10.1016/j.buildenv.2019.106481.
  • Jiang, C., D. Li, P. Zhang, J. Li, J. Wang, and J. Yu. 2017. Formaldehyde and volatile organic compound (VOC) emissions from particleboard: Identification of odorous compounds and effects of heat treatment. Build. Environ. 117 (May):118–26. doi:10.1016/j.buildenv.2017.03.004.
  • Kapteijn, F., L. Singoredjo, A. Andreini, and J.A. Moulijn. 1994. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxides with ammonia. Appl. Catal. B 33 (2–3):173–89. Cheminform. doi:10.1016/0926-3373(93)E0034-9.
  • Kumar, M., G. Rattan, and R. Prasad. 2015. Catalytic abatement of methane emission from CNG vehicles: An overview. 3:381–409. doi:10.13179/canchemtrans.2015.03.04.0227.
  • Li, J.J., M. Zhang, S.C. Cai, E. Q. Yu, J. Chen, H.P, Jia. 2020. Research progress of photothermal catalytic oxidation of VOCs. Environ. Eng. 38(1):8. doi:10.13205/j.hjgc.202001002.
  • Li, Y., M. Mao, H. Lv, J. Hou, M. Zeng, L. Ren, H. Huang, and X. Zhao. 2016. Efficient UV-vis-IR light-driven thermocatalytic purification of benzene on a Pt/CeO2 nanocomposite significantly promoted by hot electron-induced photoactivation. Environ. Sci.: Nano 4 (2):373–84. doi:10.1039/C6EN00472E.
  • Li, Y.H. 2007. Degradation of formaldehyde in indoor air by photocatalytic oxidation and numerical simulation. Harbin Institute of Technology.
  • Li, Y.Z., J.C. Huang, T. Peng, J. Xu, and X. Zhao. 2010. Photothermocatalytic synergetic effect leads to high efficient detoxification of benzene on TiO2 and Pt/TiO2 nanocomposite. Chemcatchem 2 (9):1082–87. doi:10.1002/cctc.201000085.
  • Liu, Y.R., and Y. Huang. 2020. Progress in catalytic degradation of formaldehyde by MnO2 - based materials at room temperature. J. Earth Environ. 11 (1):17.
  • Meng, X.G., L.Q. Liu, S. Ouyang, H. Xu, D. Wang, N. Zhao, and J. Ye. 2016. Nanometals for solar-to-chemical energy conversion: From semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28 (32):6781–803. doi:10.1002/adma.201600305.
  • Ministry of Ecology and Environment of the People’s Republic of China. 2011. GB/T 27630—2011 Guide for air Quality assessment in Passenger vehicles. China.
  • Pei, J., H. Xu, and L. Yi. 2015. Performance and kinetics of catalytic oxidation of formaldehyde over copper manganese oxide catalyst. Build. Environ. 84:134–41. doi:10.1016/j.buildenv.2014.11.002.
  • Pei, J., and J.S. Zhang. 2011. Critical review of catalytic oxidization and chemisorption methods for indoor formaldehyde removal. HvaC&R Res. 17 (4):476–503. doi:10.1080/10789669.2011.587587.
  • Peng, J., and S. Wang. 2007. Performance and characterization of supported metal catalysts for complete oxidation of formaldehyde at low temperatures. Appl. Catal. B 73 (3–4):282–91. doi:10.1016/j.apcatb.2006.12.012.
  • Rui, Z.B., and H.B. Ji. 2018. Multiscale effects and catalyst design in catalytic combustion of organic waste gas. J. Chem. Eng. 69 (1):317–26.
  • Tang, X., Y. Bai, A. Duong, M.T. Smith, L. Li, and L. Zhang. 2009. Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environ. Int. 36 (8):1210–24. doi:10.1016/j.envint.2009.06.002.
  • Tang, X., J. Chen, X. Huang, Y. Xu, and W. Shen. 2008. Pt/MnOx–CeO2 catalysts for the complete oxidation of formaldehyde at ambient temperature. Appl. Catal. B 81 (1):115–21. doi:10.1016/j.apcatb.2007.12.007.
  • Tang, X., Y. Li, X. Huang, Y. Xu, H. Zhu, J. Wang, and W. Shen. 2006. MnOx–CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: Effect of preparation method and calcination temperature. Appl. Catal. B 62 (3–4):265–73. doi:10.1016/j.apcatb.2005.08.004.
  • Tang, X.F. 2006. Study on complete oxidation of formaldehyde over manganese - Cerium solid solution catalyst. Graduate School of Chinese Academy of Sciences.
  • Wang, J., R. Yunus, J. Li, P. Li, P. Zhang, and J. Kim. 2015. In situ synthesis of manganese oxides on polyester fiber for formaldehyde decomposition at room temperature. Appl. Surf. Sci. 357 (DEC.1PT.A):787–94. doi:10.1016/j.apsusc.2015.09.109.
  • Wang, Q.Y., K.L. Yeung, and M.A. Bañares. 2020. Ceria and its related materials for VOC catalytic combustion: A review. Catal. Today 356:141–54. doi:10.1016/j.cattod.2019.05.016.
  • Wei, G., P. Liu, D. Chen, T. Chen, X. Liang, and H. Chen. 2019. Activity of manganese oxides supported on halloysite towards the thermal catalytic oxidation of formaldehyde: Constraint from the manganese precursor. Appl. Clay Sci. 182:105280. doi:10.1016/j.clay.2019.105280.
  • Xing, F., T. Zhu, Y. Sun, and X. Yan. 2011. The roles of various plasma species in the plasma and plasma-catalytic removal of low-concentration formaldehyde in air. J. Hazard. Mater. 196:380–85. doi:10.1016/j.jhazmat.2011.09.044.
  • Xu, H., N. Yan, Z. Qu, W. Liu, J. Mei, W. Huang, and S. Zhao. 2017. Gaseous heterogeneous catalytic reactions over Mn-based oxides for environmental applications: A critical review. Environ. Sci. Technol. 51 (16):8879. doi:10.1021/acs.est.6b06079.
  • Xu, Q.J., Y.P. Zhang, J.H. Mo, and X. Li. 2011. Indoor formaldehyde removal by thermal catalyst: Kinetic characteristics, key parameters, and temperature influence. Environ. Sci. Technol. 45 (13):5754–60. doi:10.1021/es2009902.
  • Yang, Y., Y. Li, M. Mao, M. Zeng, and X. Zhao. 2017. Uv–visible–infrared light driven thermocatalysis for environmental purification on ramsdellite MnO2 hollow spheres considerably promoted by a novel photoactivation. ACS Appl. Mater. Interfaces 9 (3):2350–57. doi:10.1021/acsami.6b12819.
  • Yang, Y., Y.Z. Li, Q. Zhang, M. Zeng, S. Wu, L. Lan, and X. Zhao. 2018. Novel photoactivation and solar-light-driven thermocatalysis on ε-MnO2 nanosheets lead to highly efficient catalytic abatement of ethyl acetate without acetaldehyde as unfavorable by-product. J. Mater. Chem. Mater. Energy Sustain. 6 (29):14195–206. doi:10.1039/C8TA04274H.
  • Ye, X.L., X.J Guo, H.Y Shi, Lin, S.T, Cen, Z. H, et al. 2007. Analysis of formaldehyde pollution in automobile air and its influencing factors. Environ. Pollut. Prev. 29 (4):4.
  • Yu, B.D. 2018. Experimental and numerical study of a novel Trombe wall system with solar photothermal catalysis. University of Science and Technology of China.
  • Yu, B.D., D. Zhong, J.X. Liu, and X. Niu. 2020. A novel solar PV/T driven air purification system based on heterogeneous photocatalytic reaction principles: A short review and preliminary investigation. Energy Convers. Manage. 210:210. doi:10.1016/j.enconman.2020.112697.
  • Yu, E., J. Li, J. Chen, J. Chen, Z. Hong, and H. Jia. 2019. Enhanced photothermal catalytic degradation of toluene by loading Pt nanoparticles on manganese oxide: Photoactivation of lattice oxygen. J. Hazard. Mater. 388:121800. doi:10.1016/j.jhazmat.2019.121800.
  • Yu, Z.J., and S.P. Huang. 2010. Study on photocatalytic degradation of formaldehyde by gas phase. J. Xianyang Norm. Univ. 25 (04):35–38.
  • Zhang, Y., X. Luo, X. Wang, K. Qian, and R. Zhao. 2007. Influence of temperature on formaldehyde emission parameters of dry building materials. Atmos. Environ. 41 (15):3203–16. doi:10.1016/j.atmosenv.2006.10.081.
  • Zhu, C., B. Li, W. Yu, H. Wang, T. Zhang, J. Xiong, and Z. Bu. 2018. Risk assessment of inhalation exposure to VOCs in dwellings in Chongqing, China. Toxicol. Res. (Camb.). doi:10.1039/c7tx00191f.
  • Zhu, G., J. Wang, Y. Muhammad, Y. Zhang, S.J. Shah, Y. Hu, Z. Chu, Z. Zhao, and Z. Zhao. 2020. Enhanced moisture-resistance and excellent photocatalytic performance of synchronous N/Zn-decorated MIL-125(Ti) for vaporous acetaldehyde degradation. Chem. Eng. J. 388:124389. doi:10.1016/j.cej.2020.124389
  • Zhu, L., Wang, J. Rong, S. Rong, H. Wang, and P. Zhang. 2017. Cerium modified birnessite-type MnO2 for gaseous formaldehyde oxidation at low temperature. Appl. Catal., B. Environ.: Int. J. Devoted Catal. Sci. Appl. 211:212–21. doi:10.1016/j.apcatb.2017.04.025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.