204
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Assessment of light-duty versus heavy-duty diesel on-road mobile source emissions using general additive models applied to traffic volume and air quality data and COVID-19 responses

&
Pages 374-393 | Received 16 Nov 2022, Accepted 17 Feb 2023, Published online: 12 May 2023

References

  • Agarwal, A. 2004. A comparison of weekend and weekday travel behavior characteristics in urban areas. M.S.C.E., Civil Engineering, University of South Florida. [Online]. https://digitalcommons.usf.edu/etd/936.
  • Aldrin, M., and I. H. Haff. 2005. Generalised additive modelling of air pollution, traffic volume and meteorology. Atmos. Environ. 39 (11):2145–55. doi:10.1016/j.atmosenv.2004.12.020.
  • Ambient Monitoring Technology Information Center. 2020. Near-road site list. ed. United States Environmental Protection Agency.
  • Bar, S., B. R. Parida, S. P. Mandal, A. C. Pandey, N. Kumar, and B. Mishra. 2021. Impacts of partial to complete COVID-19 lockdown on NO2 and PM2.5 levels in major urban cities of Europe and USA. Elsevier Public Health Emerg. Coll. doi:10.1016/j.cities.2021.103308.
  • Bauwens, M., S. Compernolle, T. Stavrakou, J.-F. Müller, J. Gent, H. Eskes, P. F. Levelt, A. R. Van Der, J. P. Veefkind, J. Vlietinck, et al. 2020. Impact of Coronavirus outbreak on NO2 pollution assessed using TROPOMI and OMI observations. SPECIAL COLLECTION: COVID-19 Pandemic: Linking Health Soc. Environ. 47 (11), May 8. doi:10.1029/2020GL087978.
  • Berman, J. D., and K. Ebisu. 2020. Changes in U.S. air pollution during the COVID-19 pandemic. Sci. Total Environ. 739 (SI: COVID–19: Impact by and on the Environment, October 15, 2020). doi: 10.1016/j.scitotenv.2020.139864.
  • Bick, A., A. Blandin, and K. Mertens. 2020. Work from home before and after the Covid-19 outbreak. FRB of Dallas Working Paper No. 2017. doi:10.24149/wp2017r2.
  • Boriboonsomsin, K., and M. Barth. 2008. Impacts of freeway high-occupancy vehicle lane configuration on vehicle emissions. Transp. Res. D 13 (2):112–25. doi:10.1016/j.trd.2008.01.001.
  • Braga, A. L. F., P. H. Saldiva, L. A. Pereira, J. J. Menezes, G. M. Conceição, C. A. Lin, A. Zanobetti, J. Schwartz, and D. W. Dockery. 2001. Health effects of air pollution exposure on children and adolescents in São Paulo, Brazil. Pediatr. Pulmonol. 31 (2):106–13, February. doi:10.1002/1099-0496(200102)31:2<106:AID-PPUL1017>3.0.CO;2-M.
  • California Department of Transportation. Performance measurement system (PeMS). [Online]. https://pems.dot.ca.gov/.
  • Chen, Y., R. Qin, G. Zhang, and H. Albanwan. 2021. Spatial temporal analysis of traffic patterns during the COVID-19 epidemic by vehicle detection using planet remote-sensing satellite images. Remote. Sens. 13 (2). doi: 10.3390/rs13020208.
  • Cicero-Fernândez, P., J. R. Long, and A. M. Winer. 1997. Effects of grades and other loads on on-road emissions of hydrocarbons and carbon monoxide. J. Air Waste Manag. Assoc. 47 (8):898–904. doi:10.1080/10473289.1997.10464455.
  • Czeisler, M. É., M. E. Howard, R. Robbins, L. K. Barger, E. R. Facer-Childs, S. M. W. Rajaratnam, and C. A. Czeisler. 2021. Early public adherence with and support for stay-at-home COVID-19 mitigation strategies despite adverse life impact: A transnational cross-sectional survey study in the United States and Australia. BMC Public Health 21:Art no. 503. doi:10.1186/s12889-021-10410-x.
  • Du, J., H. A. Rakha, F. Filali, and H. Eldardiry. 2020. COVID-19 pandemic impacts on traffic system delay, fuel consumption and emissions. Int. J. Transp. Sci. Technol. 10 (2):184–96. doi:10.1016/j.ijtst.2020.11.003.
  • Elshorbany, Y. F., H. C. Kapper, J. R. Ziemke, and S. A. Parr. 2021. The status of air quality in the United States during the COVID-19 pandemic: A remote sensing perspective. Remote. Sens. 13 (3):369. doi:10.3390/rs13030369.
  • Emery, C., Z. Liu, A. G. Russell, M. T. Odman, G. Yarwood, and N. Kumar. 2017. Recommendations on statistics and benchmarks to assess photochemical model performance. J. Air Waste Manag. Assoc. 67 (5):582–98. doi:10.1080/10962247.2016.1265027.
  • Georgia Department of Transportation. Traffic Analysis and Data Application. [Online]. https://gdottrafficdata.drakewell.com/publicmultinodemap.asp.
  • Hajat, A., C. Hsia, and M. S. O’Neill. 2015. Socioeconomic disparities and air pollution exposure: A global review. Curr. Environ. Health Rep. 2:440–50. doi:10.1007/s40572-015-0069-5.
  • Highway Data Services Bureau. Downloadable traffic data. [Online]. https://www.dot.ny.gov/divisions/engineering/technical-services/highway-data-services/hdsb.
  • Highway Data Services Bureau. 2021. Effect of the COVID-19 pandemic on traffic in New York state in 2020. New York State Department of Transportation.
  • Hoek, G., R. M. Krishnan, R. Beelen, A. Peters, B. Ostro, B. Brunekreef, and J. D. Kaufman. 2013. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 12:43. doi:10.1186/1476-069X-12-43.
  • Hudda, N., M. C. Simon, A. P. Patton, and J. L. Durant. 2020. Reductions in traffic-related black carbon and ultrafine particle number concentrations in an urban neighborhood during the COVID-19 pandemic. Sci. Total Environ. 742 (Special Issue: COVID–19: Impact by and on the Environment). doi: 10.1016/j.scitotenv.2020.140931.
  • Ihuoma-Walter, I. M. 2021. Multi-modal traffic signal reallocation for an intersection with high freight volumes and the impact of COVID. Doctor of Engineering, Civil Engineering, Morgan State University, Ann Arbor, 28497608. [Online]. https://go.openathens.net/redirector/gatech.edu?url=https://search.proquest.com/dissertations-theses/multi-modal-traffic-signal-reallocation/docview/2546060801/se-2?accountid=11107.
  • Lal, R. M., A. Ramaswami, and A. G. Russell. 2020. Assessment of the near-road (monitoring) network including comparison with nearby monitors within US cities: New findings from nationwide observations with implications for urban environmental health outcomes. Environ. Res. Lett. 15 (11). doi: 10.1088/1748-9326/ab8156.
  • Lasry, A., D. Kidder, M. Hast, J. Poovey, G. Sunshine, K. Winglee, N. Zviedrite, F. Ahmed, K. A. Ethier, C. Clodfelter, et al. 2020. Timing Of community mitigation and changes in reported COVID-19 and community mobility ― Four U.S. metropolitan areas, February 26–April 1, 2020. Morb. Mortal. Wkly. Rep. 69 (15):451–57. doi:10.15585/mmwr.mm6915e2.
  • Leins, C. 2020. 10 states with the most aggressive response to COVID-19. ed. U.S. News & World Report.
  • Mavroidis, I., and M. Ilia. 2012. Trends of NOx, NO2 and O3 concentrations at three different types of air quality monitoring stations in Athens, Greece. Atmos. Environ. 63:135–47, December. doi:10.1016/j.atmosenv.2012.09.030.
  • McDonald, B. C., S. A. McKeen, Y. Y. Cui, R. Ahmadov, S.-W. Kim, G. J. Frost, I. B. Pollack, J. Peischl, T. B. Ryerson, J. S. Holloway, et al. 2018. Modeling ozone in the Eastern U.S. using a fuel-based mobile source emissions inventory. Environ. Sci. Technol. 52 (13):7360–70. doi:10.1021/acs.est.8b00778.
  • mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation. 2022. [Online]. https://cran.r-project.org/web/packages/mgcv/index.html.
  • Mitchell, S. H., E. M. Bulger, H. C. Duber, A. L. Greninger, T. D. Ong, S. C. Morris, L. D. Chew, T. M. Haffner, V. L. Sakata, J. B. Lynch, et al. 2020. Western Washington State COVID-19 experience: Keys to flattening the curve and effective health system response. J. Am. Coll. Surg. 231 (3):316–24. doi:10.1016/j.jamcollsurg.2020.06.006.
  • Morawska, L., E. R. Jayaratne, K. Mengersen, M. Jamriska, and S. Thomas. 2002. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends. Atmos. Environ. 36 (27):4375–83. doi:10.1016/S1352-2310(02)00337-0.
  • Mueller, D., S. Uibel, M. Takemura, D. Klingelhoefer, and D. A. Groneberg. 2011. Ships, ports, and particulate air pollution – an analysis of recent studies. J. Occup. Med. Toxicol. 6:Art no. 31. doi:10.1186/1745-6673-6-31.
  • National Centers for Environmental Information, NESDIS, NOAA, and U.S. Department of Commerce. U.S. Local Climatological Data (LCD).
  • New York State Department of Transportation. Traffic data viewer. [Online]. https://gisportalny.dot.ny.gov/portalny/apps/webappviewer/index.html?id=28537cbc8b5941e19cf8e959b16797b4.
  • Park, Y. M., and M.-P. Kwan. 2020. Pollution: Considering the spatiotemporal dynamics of population distribution. Int J Environ Res Public Health 17 (3), February 1. doi:10.3390/ijerph17030908.
  • Qin, M., H. Yu, Y. Hu, A. G. Russell, M. T. Odman, K. Doty, A. Pour-Biazar, R. T. McNider, and E. Knipping. 2019. Improving ozone simulations in the Great Lakes Region: The role of emissions, chemistry, and dry deposition. Atmos. Environ. 202:167–79. doi:10.1016/j.atmosenv.2019.01.025.
  • R: A Language and Environment for Statistical Computing. 2021. Vienna, Austria: R Foundation for Statistical Computing. [Online]. https://www.R-project.org/.
  • Salako, G. O., P. K. Hopke, D. D. Cohen, B. A. Begum, S. K. Biswas, G. G. Pandit, Y. -S. Chung, S. A. Rahman, M. S. Hamzah, P. Davy, et al. 2012. Exploring the variation between EC and BC in a variety of locations. Aerosol Air Qual. Res. 12 (1):1–7. doi:10.4209/aaqr.2011.09.0150.
  • Schatke, M., F. Meier, B. Schröder, and S. Weber. 2022. Impact of the 2020 COVID-19 lockdown on NO2 and PM10 concentrations in Berlin, Germany. Atmos. Environ. 290. doi:10.1016/j.atmosenv.2022.119372.
  • Shi, X., and G. P. Brasseur. 2020. The response in air quality to the reduction of Chinese economic activities during the COVID-19 outbreak. SPECIAL COLLECTION: COVID-19 Pandemic: Linking Health Soc. Environ. 47, May 18. doi:10.1029/2020GL088070.
  • Tang, J., A. McNabola, B. Misstear, F. Pilla, and M. S. Alam. 2019. Assessing the impact of vehicle speed limits and fleet composition on air quality near a school. Int J Environ Res Public Health 16 (1). doi: 10.3390/ijerph16010149.
  • Tanzer-Gruener, R., J. Li, S. R. Eilenberg, A. L. Robinson, and A. A. Presto. 2020. Impacts of modifiable factors on ambient air pollution: A case study of COVID-19 shutdowns. Environ. Sci. Technol. Lett. 7 (8):554–59. doi:10.1021/acs.estlett.0c00365.
  • Tian, N., J. Xue, and T. M. Barzyk. 2012. Evaluating socioeconomic and racial differences in traffic-related metrics in the United States using a GIS approach. J. Expo. Sci. Environ. Epidemiol. 23 (2):215–22. doi:10.1038/jes.2012.83.
  • United States Environmental Protection Agency. Air quality system API. United States Environmental Protection Agency. [Online]. https://aqs.epa.gov/aqsweb/documents/data_api.html.
  • United States Environmental Protection Agency. 2017. 2017 National Emissions Inventory (NEI) Data. [Online]. https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data.
  • United States Federal Highway Administration. 2014. Traffic monitoring guide. United States Federal Highway Administration.
  • Washington’s Air Quality Network. Site report. [Online]. https://enviwa.ecology.wa.gov/report/SingleStationReport.
  • Washington State Department of Transportation. Traffic GeoPortal. [Online]. https://www.wsdot.wa.gov/data/tools/geoportal/?config=traffic.
  • Washington State Department of Transportation. 2019. Request for traffic data form. ed. Washington State Department of Transportation, 2.
  • Wild, R. J., W. P. Dubé, K. C. Aikin, S. J. Eilerman, J. A. Neuman, J. Peischl, T. B. Ryerson, and S. S. Brown. 2017. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmos. Environ. 148:182–89, January. doi:10.1016/j.atmosenv.2016.10.039.
  • Wu, J., S. Smith, M. Khurana, C. Siemaszko, and B. DeJesus-Banos. 2020. Stay-at-home orders across the country. NBC, ed. NBC News.
  • Wyatt, D. W., H. Li, and J. E. Tate. 2014. The impact of road grade on carbon dioxide (CO2) emission of a passenger vehicle in real-world driving. Transp. Res. D 32:160–70. doi:10.1016/j.trd.2014.07.015.
  • Xiang, J., E. Austin, T. Gould, T. Larson, J. Shirai, Y. Liu, J. Marshall, and E. Seto. 2020. Impacts of the COVID-19 responses on traffic-related air pollution in a Northwestern US city. Sci. Total Environ. 747:141325, December 10. doi:10.1016/j.scitotenv.2020.141325.
  • Xu, K., K. Cui, L.-H. Young, Y.-K. Hsieh, Y.-F. Wang, J. Zhang, and S. Wan. 2020. Impact of the COVID-19 event on air quality in Central China. Aerosol Air Qual. Res. (5):915–29. doi:10.4209/aaqr.2020.04.0150.
  • Yang, J., Y. Wen, Y. Wang, S. Zhang, J. P. Pinto, E. A. Pennington, Z. Wang, Y. Wu, S. P. Sander, J. H. Jiang, et al. 2021. From COVID-19 to future electrification: Assessing traffic impacts on air quality by a machine-learning model. Proc. Natl. Acad. Sci. 118 (26), June 21. doi:10.1073/pnas.2102705118.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.