275
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Impact of lane-changing behavior on traffic emissions of road sections in multi-dimensional mixed traffic flow environment

, , , , , & show all
Pages 403-416 | Received 17 Nov 2022, Accepted 01 Mar 2023, Published online: 14 Apr 2023

References

  • Ahn, K., and H. A. Rakha. 2022. Developing a hydrogen fuel cell vehicle (HFCV) energy consumption model for transportation applications. Energies 15 (2):529. doi:10.3390/en15020529.
  • Bekta, T., and G. Laporte. 2011. The pollution-routing problem. Transp. Res. Part B 45 (8):1232–50. doi:10.1016/j.trb.2011.02.004.
  • Cattin, J., L. Leclercq, F. Pereyron, and N. E. Faouzi. 2019. Calibration of Gipps’ car-following model for trucks and the impacts on fuel consumption estimation. IET Intel. Transport Syst. 13 (2):367–75. doi:10.1049/iet-its.2018.5303.
  • Devi, Y.U., and M.S. Rukmini. 2016. IoT in connected vehicles: Challenges and issues—a review. 2016 International Conference on Signal Processing, Communication, Power and Embedded System (SCOPES), 1864–67. IEEE.
  • Ding, H., W. Li, N. Xu, and J. Zhang. 2022. An enhanced eco-driving strategy based on reinforcement learning for connected electric vehicles: Cooperative velocity and lane-changing control. J. Intell. Connected Veh. 5 (3):316–32. doi:10.1108/JICV-07-2022-0030.
  • Editorial office of China Journal of Highway and Transport. 2016. Review on China’s traffic engineering research progress: 2016. China J. Highway Transp. 29 (6):1–161.
  • Frey, H.C. 2018. Trends in onroad transportation energy and emissions. J. Air Waste Manag. Assoc. 68 (6):514–63. doi:10.1080/10962247.2018.1454357.
  • Graba, M., J. Mamala, A. Bieniek, and Z. Sroka. 2021. Impact of the acceleration intensity of a passenger car in a road test on energy consumption. Energy 226:120429. doi:10.1016/j.energy.2021.120429.
  • Haustein, S., A.F. Jensen, and E. Cherchi. 2021. Battery electric vehicle adoption in Denmark and Sweden: Recent changes, related factors and policy implications. Energy Policy 149:112096. doi:10.1016/j.enpol.2020.112096.
  • Helbing, D. 2001. Traffic and related self-driven many-particle systems. Rev. Mod. Phys. 73 (4):1067. doi:10.1103/RevModPhys.73.1067.
  • Hu, X., Y.M. Xu, J. Guo, T. Zhang, Y.H. Bi, W. Liu, and X. Zhou. 2022. A complete information interaction-based bus passenger flow control model for epidemic spread prevention. Sustainability 14 (13):8032. doi:10.3390/su14138032.
  • Hu, X., and M. Zheng. 2021. Research progress and prospects of vehicle driving behavior prediction. World Electr. Veh. J. 12 (2):88. doi:10.3390/wevj12020088.
  • Karelina, M.Y., P.I. Smirnov, and B.S. Subbotin. 2021. The influence of the characteristics of the traffic flow and the structure of vehicles on the energy consumption and ecological safety of passenger transportation: Case of Vologda, Russia. 2021 Intelligent Technologies and Electronic Devices in Vehicle and Road Transport Complex (TIRVED), Moscow, Russian Federation, 1–6. IEEE.
  • Kaza, N. 2020. Urban form and transportation energy consumption. Energy Policy 136:111049. doi:10.1016/j.enpol.2019.111049.
  • Kurien, C., A.K. Srivastava, and E. Molere. 2020. Indirect carbon emissions and energy consumption model for electric vehicles: Indian scenario. Integr. Environ. Assess. Manag. 16 (6):998–1007. doi:10.1002/ieam.4299.
  • Lashgari, A., H. Hosseinzadeh, M. Khalilzadeh, B. Milani, A. Ahmadisharaf, and S. Rashidi. 2022. Transportation energy demand forecasting in Taiwan based on metaheuristic algorithms. Energy Sources, Part A 44 (2):2782–800. doi:10.1080/15567036.2022.2062072.
  • Lin, B., and L. Shi. 2022. Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles. Appl. Energy 310:118582. doi:10.1016/j.apenergy.2022.118582.
  • Liu, J.H., L. Feng, and Z.W. Li. 2021. Optimal road grade design based on stochastic speed trajectories for minimising transportation energy consumption. IET Intel. Transport Syst. 15 (11):1414–28. doi:10.1049/itr2.12111.
  • Long, Y., Y. Yoshida, J. Meng, D. Guan, L. Yao, and H. Zhang. 2019. Unequal age-based household emission and its monthly variation embodied in energy consumption–a cases study of Tokyo, Japan. Appl. Energy 247:350–62. doi:10.1016/j.apenergy.2019.04.019.
  • Luin, B., S. Petelin, and F. Al-Mansour. 2019. Microsimulation of electric vehicle energy consumption. Energy 174:24–32. doi:10.1016/j.energy.2019.02.034.
  • Mekker, M. M., Y. J. Lin, M. K. I. Elbahnasawy, T. Shamseldin, H. Li, A. Habib, and D. Bullocck. 2018. Application of LiDAR and connected vehicle data to evaluate the impact of work zone geometry on freeway traffic operations. Transp. Res. Rec. 2672 (16):1–13. doi:10.1177/0361198118758050.
  • Mohammad, A., and K.Ç. Merve. 2022. Prediction of transportation energy demand by novel hybrid meta-heuristic ANN. Energy 249:123735. doi:10.1016/j.energy.2022.123735.
  • Montgomery, H. 2017. Preventing the progression of climate change: One drug or polypill? Biofuel. Res. J. 4 (1):536. doi:10.18331/BRJ2017.4.1.2.
  • Nagel, K., and M. Schreckenberg. 1992. A cellular automaton model for freeway traffic. J. Phys. 2 (12):2221–29. doi:10.1051/jp1:1992277.
  • Pham, Q.T. 2019. Investigation of avoidance assistance system for the driver of a personal transporter using personal space: A simulation based study. Int. J. Mech. Eng. Robot. Res. 8 (02):254–59. doi:10.18178/ijmerr.8.2.254-259.
  • Qin, Y.Y., X.H. Hu, S. Q. Li, Z.Y. He, and M.T. Xu. 2021. Stability analysis of mixed traffic flow in connected and autonomous environment. J. Harbin Inst. Tech. 53 (3):152–57.
  • Rahimi, M., D. Bortoluzzi, and F. Biral. 2022. Impacts of Vehicle Speed and Number of Heavy Vehicles on Emissions and Fuel Consumption in Sensitive Locations. CA: Transportation Research Record. 03611981221137586.
  • Shladover, S.E., D. Su, and X.Y. Lu. 2012. Impacts of cooperative adaptive cruise control on freeway traffic flow. Transp. Res. Rec. 2324 (1):63–70. doi:10.3141/2324-08.
  • Silgu, M.A., I.G. Erdağı, G. Göksu, and H.B. Celikoglu. 2021. Combined control of freeway traffic involving cooperative adaptive cruise controlled and human driven vehicles using feedback control through SUMO. IEEE Trans. Intell. Transp. Syst. 23 (8):11011–25. doi:10.1109/TITS.2021.3098640.
  • Silgu, M.A., K. Muderrisoglu, A.H. Unsal, and H.B. Celikoglu. 2018. Approximation of emission for heavy duty trucks in city traffic. 2018 IEEE International Conference on Vehicular Electronics and Safety (ICVES), Madrid, Spain, 1–4. IEEE.
  • Song, G.H., and L. Yu. 2019. Estimation of fuel efficiency of road traffic by characterization of vehicle-specific power and speed based on floating car data. Transp. Res. Rec. 2139 (1):11–20. doi:10.3141/2139-02.
  • Tian, H.H., Y. Xue, S.J. Kang, and Y.J. Liang. 2009. Study on the energy consumption using the cellular automaton mixed traffic model. Acta Phys. Sin. 58 (7):4506–13. doi:10.7498/aps.58.4506.
  • Treiber, M., A. Hennecke, and D. Helbing. 2000. Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. 62 (2):1805–24. doi:10.1103/PhysRevE.62.1805.
  • Watts, N., M. Amann, N. Arnell, S. Ayeb-Karlsson, K. Belesova, M. Boykoff, P. Byass, W. Cai, D. Campbell-Lendrum, S. Capstick and J. Chambers. 2019. The 2019 report of the lancet countdown on health and climate change: Ensuring that the health of a child born today is not defined by a changing climate. The Lancet 394 (10211):1836–78. doi:10.1016/S0140-6736(19)32596-6.
  • Yang, C., and C. Huang. 2022. Quantitative mapping of the evolution of AI policy distribution, targets and focuses over three decades in China. Technol. Forecast. Soc. Change 174:121188. doi:10.1016/j.techfore.2021.121188.
  • Yuan, T., F. Alasiri, and P.A. Ioannou. 2022. Selection of the speed command distance for improved performance of a rule-based VSL and lane change control. IEEE Trans. Intell. Transp. Syst. 23 (10):19348–57. doi:10.1109/TITS.2022.3157516.
  • Zegeye, S.K., B. Schutter, J. Hellendoorn, E. Breunesseb, and A. Hegyic. 2013. Integrated macroscopic traffic flow, emission, and fuel consumption model for control purposes. Transp. Res. Part C 31:158–71. doi:10.1016/j.trc.2013.01.002.
  • Zhang, Y. 2022. Analysis of China’s energy efficiency and influencing factors under carbon peaking and carbon neutrality goals. J. Clean. Prod. 370:133604. doi:10.1016/j.jclepro.2022.133604.
  • Zhang, W., and W. Zhang. 2009. Boundary effects on energy dissipation in a cellular automaton model. Arxiv: Physicssoc-Ph. 0904.3727v2. https://doi.org/10.48550/arXiv.0904.3940
  • Zhang, Y., Y. Zou, Y. Wang, L. Wu, and W. Han. 2022. Understanding the merging behavior patterns and evolutionary mechanism at freeway on-ramps. J. Intell. Transp. Syst. 26 (1):1–14. doi:10.1080/15472450.2022.2069501.
  • Zhao, F., X. Liu, H. Zhang, Z. Liu, and W. Zhang. 2022. Automobile Industry under China’s carbon peaking and carbon neutrality goals: Challenges, opportunities, and coping strategies. J. Adv. Transp. 2022:5834707. doi:10.1155/2022/5834707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.