186
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Organic waste recycling by vermicomposting amended with rock phosphate impacts the stability and maturity indices of vermicompost

, , , , & ORCID Icon
Pages 553-567 | Received 17 Jan 2023, Accepted 14 Apr 2023, Published online: 06 Jun 2023

References

  • Adhami, E., S. Hosseini, and H. Owliaie. 2014. Forms of phosphorus of vermicompost produced from leaf compost and sheep dung enriched with rock phosphate. Int. J. Recycl Org. Waste Agricult. 3 (3):68. doi:10.1007/s40093-014-0068-9.
  • Albrecht, R., J. Le Petit, V. Calvert, G. Terrom, and C. Perissol. 2010. Changes in the level of alkaline and acid phosphatase activities during green wastes and sewage sludge co-composting. Bioresour. Technol. 101 (1):228–33. doi:10.1016/j.biortech.2009.08.017.
  • Alidadi, H., A. Hosseinzadeh, A.A. Najafpoor, H. Esmaili, J. Zanganeh, M.D. Takabi, and F. Piranloo. 2016. G Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. J. Environ. Manage. 182:134e140. doi:10.1016/j.jenvman.2016.07.025.
  • Ameen, A., J. Ahmad, and S. Raza. 2016. Determination of CEC to evaluate the quality and maturity of compost prepared by using municipal solid waste. Int. J. Sci. Res. 6 (5):2250–3153.
  • Amouei, A.I., Z. Yousefi, and T. Khosrav. 2017. Comparison of vermicompost characteristics produced from sewage sludge of wood and paper industry and household solid wastes. J. Environ. Health Sci. Eng. 15 (1):5. doi:10.1186/s40201-017-0269-z.
  • Ansari, A.A., and J. Rajpersaud. 2012. Physicochemical changes during vermicomposting of water hyacinth (Eichhornia crassipes) and grass clippings. ISRN Soil Sci. 984783:6. doi:10.5402/2012/984783.
  • Asha, S., M.C. Manna, S. Bhattacharya, M.M. Rahman, A. Mandal, J.K. Thakur, S. Kamlesh, V.K. Bhargav, U.B. Singh, K.P. Sahu, et al. 2020. Dynamics of maturity and stability indices during decomposition of biodegradable city waste using rapo-compost technology. Appl. Soil Ecol. 155:155. doi:10.1016/j.apsoil.2020.103670.
  • Bernal, M.P., J.A. Albuquerque, and R. Moral. 2009. Composting of animal manures and chemical criteria of compost maturity assessment: A review. Bioresour. Technol. 100 (22):444–545. doi:10.1016/j.biortech.2008.11.027.
  • Bernal, M.P., C. Paredes, M.A. Sanchez-Monedero, and J. Cegarra. 1998. Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour. Technol. 63 (1):91–99. doi:10.1016/S0960-8524(97)00084-9.
  • Bhat, S.A., J. Singh, and A. Pal. 2017. Instrumental characterization of organic wastes for evaluation of vermicompost maturity. J. Anal. Sci. Technol. 8 (1):2. doi:10.1186/s40543-017-0112-2.
  • Black, C.A. 1965. Methods of soil analysis, parts 1 and 2. Madison, Wisconsin in USA: American Society of Agronomy.1nc. Publication.
  • Bremner, J.M., and C.S. Mulvaney. 1982. Nitrogen-Total. In: Methods of soil analysis. Part 2. Chemical and microbiological properties, Page, A.L., Miller, R.H. and Keeney, D.R. Eds., American Society of Agronomy, Soil Science Society of America, Madison, Wisconsin, 595–624.
  • Brinton, W.F. 2007. Compost quality standards and guidelines. USA: Woods End Research Laboratory.
  • Chanyasak, V., and H. Kubota. 1981. Carbon/Organic nitrogen ratio in water extractas measure of composting degradation. J. Ferment. Technol. 59:215–19.
  • Chaudhuri, P.S., T.K. Pal, G. Bhattacharjee, and S.K. Dey. 2000. Chemical changes during vermicomposting of kitchen wastes. Trop. Ecol. 41 (1):107–10.
  • Chefetz, B., P.G. Hatcher, Y. Hadar, and Y. Chen. 1998. Chemical and biological characterization of organic matter during composting of municipal solid wastes. J. Environ. Qual. 25 (4):776–85. doi:10.2134/jeq1996.00472425002500040018x.
  • Cheshire, M.V., and C.M. Mundie. 1966. The hydrolytic extraction of carbohydrates from soil by sulphuric acid. J. Soil Sci. 17 (2):372–81. doi:10.1111/j.1365-2389.1966.tb01480.x.
  • Devi, J., and M. Prakash. 2015. Microbial population dynamics during vermicomposting of three different substrates amended with cow-dung. Int. J. Curr. Microbiol. Appl. Sci. 4 (2):1086–92.
  • FCO (Fertilizer Control Order). 1985. Biofertilizers and organic fertilizers in Fertilizer (control) order. Published by National Centre of Organic Farming. Dept. of Agriculture and Corporation, Ministry of Agriculture, Govt. of India.
  • Garcia, C., T. Hernandez, F. Costa, and M. Ayusho. 1992. Evaluation of maturity of municipal waste compost using simple chemical parameters. Commun. Soil Sci. Plant Anal. 23 (13–14):1501–12. doi:10.1080/00103629209368683.
  • Garcia, C., T. Hernindez, and F. Costa. 1991. The influence of composting on the fertilizing value of an aerobic sewage sludge. Plant Soil., in press. 136 (2):269–72. doi:10.1007/BF02150059.
  • Garg, V.K., and P. Kaushik. 2004. Dynamics of biological and chemical parameter during vermicomposting of solid textile mill sludge mixed with cow dung and agricultural residues. Bioresour. Technol. 94 (2):203–09. doi:10.1016/j.biortech.2003.10.033.
  • Ghinea, C., and A. Leahu. 2020. Monitoring of fruit and vegetable waste composting process: Relationship between microorganisms and physico-chemical parameters. Processes 8 (3):302. doi:10.3390/pr8030302.
  • Goyal, S., M.M. Mishra, I.S. Hooda, and S. Raghubir. 2005. Organic matter microbial biomass relationship in field experiments under tropical conditions: Effect of inorganic fertilization and organic amendments. Soil Biol. Biochem. 24 (11):1081–84. doi:10.1016/0038-0717(92)90056-4.
  • Guoxue, L., F. Zhang, Y. Sun, J.W.C. Wong, and M. Fang. 2001. Chemical evaluation of sewage composting as mature indicator for composting process. Water Air Soil Pollut. 132 (3/4):333–45. doi:10.1023/A:1013254815976.
  • Hait, S., and V. Tare. 2011. Vermistabilization of primary sewage sludge. Bioresour. Technol. 102 (3):2812–20. doi:10.1016/j.biortech.2010.10.031.
  • Hernandez-Rodriguez, O.A., J.C. Lopez-Diaz, A.M. Arras-Vota, Quezada, D. Barrios, and O. Quezada-Solís. 2012. Qualities of vermicompost obtain from residues of forestry and livestock. Bioresour. Technol. 1 (1). doi:10.5539/sar.v1n1p70.
  • Jackson, M.L. 1973. Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.
  • Jadia, C.D., and M.H. Fulekar. 2008. Vermicomposting of vegetable waste: A bio physicochemical process based on hydro-operating bioreactor. Afr. J. Biotechnol. 7:3723–30.
  • Juhi, Y.K. Singh, B. Singh, A. Das, A. Kohli, R. Kumar, S. Shambhavi, and R. Padbhushan. 2022. Crop yields and soil organic matter pools in zero-till direct-seeded rice-based cropping systems as influenced by fertigation levels in the Indo-Gangetic plains in India. Carbon Manage. 13 (1):78–89. doi:10.1080/17583004.2021.2016495.
  • Karak, T., P. Bhattacharya, R.K. Paul, T. Das, and S.K. Saha. 2013. Evaluation of composts from agricultural wastes with fish pond sediment as bulking agent to improve compost quality. Clean Soil AirWater. 41 (7):711–23. doi:10.1002/clen.201200142.
  • Klein, D.A., T.C. Loh, and R.L. Coudling. 1971. A rapid procedure to evaluate dehydrogenase activity of soils low in organic matter. Soil Biol. Biochem. 3 (4):385–87. doi:10.1016/0038-0717(71)90049-6.
  • Lazcano, C., M. Gomez-Brandon, and J. Dominguez. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72 (7):1013–19. doi:10.1016/j.chemosphere.2008.04.016.
  • Li, R., J.J. Wang, Z. Zhang, F. Shen, G. Zhang, R. Qin, X. Li, and R. Xiao. 2012. Nutrient transformations during composting of pig manure with bentonite. Bioresour. Technol. 121:362–68. doi:10.1016/j.biortech.2012.06.065.
  • Manna, M.C., S. Jha, P.K. Ghosh, and C.L. Acharya. 2003. Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition. Bioresour. Technol. 88 (3):197–206. doi:10.1016/S0960-8524(02)00318-8.
  • Manna, M.C., S. Jha, P.K. Ghosh, T.K. Ganguly, K.N. Singh, and P.N. Takkar. 2014. Capacity of various food materials to support growth and reproduction of epigeic earthworms on vermicompost. J. Sustain. For. 20 (1):1–15. doi:10.1300/J091v20n01_01.
  • Manna, M.C., M. Singh, S. Kundu, A.K. Tripathi, and P.N. Takkar. 1997. Growth and reproduction of the vermicomposting earthworm Perionyexcavatesas influenced by food material. Biol. Fertil. Soils 24 (1):129–32. doi:10.1007/BF01420233.
  • McGill, W.B., K.R. Cannon, J.A. Robertson, and F.D. Cook. 1986. Dynamics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil Sci. 66 (1):1–19. doi:10.4141/cjss86-001.
  • Morel, J., F. Jacquin, and A. Gucket. 1979. Contribution a la determination de test de l maturite des composts urbrains. C.R. Contrat, 75-124. Ministere de 1’ Environment et du Cadre de Vie. ENSAIA Nancy. 32.
  • Nath, G., K. Singh, and D.K. Singh. 2009. Chemical analysis of vermicompost vermiwash of different combinations of animal, agro and kitchen wastes. Aust. J. Basic Appl. 3 (4):3672–76.
  • Nelson, D.W., and L.E. Sommers. 1982. Total Carbon, Organic Carbon and Organic Matter. In: Page, A.L., Miller, R.H. and Keeney, D.R., Eds., Methods of Soil Analysis: Chemical and Microbiological Properties, American Society of Agronomy, Soil Science Society of America, Madison, 539–79.
  • Nikaeen, M., A.H. Nafez, B. Bina, B.F. Nabavi, and A. Hassanzadeh. 2015. Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manage. 39:104–10. doi:10.1016/j.wasman.2015.01.028.
  • Nishanth, D., and D.R. Biswas. 2008. Kinetics of phosphorus and potassium release from rock phosphate and waste mica enriched compost and their effect on yield and nutrient uptake by wheat (Triticum aestivum). Bioresour. Technol. 99 (9):3342–53. doi:10.1016/j.biortech.2007.08.025.
  • Padbhushan, R., A. Das, R. Rakshit, R.P. Sharma, A. Kohli, and R. Kumar. 2016. Long-term organic amendment application improves influence on soil aggregation, aggregate associated carbon and carbon pools under scented rice-potato-onion cropping system after the 9th crop Cycle. Commun. Soil Sci. Plant. Anal. 47 (21):2445–57. doi:10.1080/00103624.2016.1254785.
  • Padbhushan, R., R. Rakshit, A. Das, and R.P. Sharma. 2016. Effects of various organic amendments on organic carbon pools and water stable aggregates under a scented rice–potato–onion cropping system. Paddy Water Environ. 14 (4):481–89. doi:10.1007/s10333-015-0517-8.
  • Padbhushan, R., S. Sharma, U. Kumar, D.S. Rana, A. Kohli, M. Kaviraj, B. Parmar, R. Kumar, K. Annapurna, A.K. Sinha, et al. 2021. Meta-analysis approach to measure the effect of integrated nutrient management on crop performance, microbial activity, and carbon stocks in Indian soils. Front. Environ. Sci. 9:724702. doi:10.3389/fenvs.2021.724702.
  • Parthasarathi, K., and L.S. Ranganathan. 2000. Aging effect on enzyme activities in pressmud vermicasts of Lampitomautirii and Eudriluseugeniae. Biol. Fertil. Soils 30 (4):347–50. doi:10.1007/s003740050014.
  • Pattnaik, S., and M.V. Reddy. 2010. Bioconversion of municipal (organic) solid waste into nutrient-rich vermicompost by earthworms (Eudriluseugeniae, Eisenia fetida and Perionyx excavatus). Dyn. Soil Dynamic Plant 3:122–28. doi:10.1155/2010/967526.
  • Piper, C.S. 1966. Soil and plant analysis, 401. Bombay: Hans’s publishers.
  • Pramanik, P., G.K. Ghosh, and P. Banik. 2009. Effect of microbial inoculation during vermicomposting of different organic substrates on microbial status and quantification and documentation of acid phosphatase. Waste Manage. 29 (2):574–78. doi:10.1016/j.wasman.2008.06.015.
  • Ros, M., C. Garcıa, and T. Hernandez. 2006. A full-scale study of treatment of pig slurry by composting: Kinetic changes in chemical and microbial properties. Waste Manage. 26 (10):1108–18. doi:10.1016/j.wasman.2005.08.008.
  • Saharinen, M.H. 1998. Evaluation of changes in CEC during composting. Compost. Sci. Util. 6 (4):29–37. doi:10.1080/1065657X.1998.10701938.
  • Sahu, A., M.C.⁠. Manna, S. Bhattacharya, J.K. Thakur⁠, A. Mandal⁠, M.M. Rahman, U.B. Singh, V.K. Bhargav, S. Srivastava, A.K. Patra⁠, et al. 2019. Thermophilicligno-cellulolytic fungi: The future of efficient and rapid bio-waste management. J. Environ. Manage. 244:144–53. doi:10.1016/j.jenvman.2019.04.015.
  • Sayed, E., and G. Khater. 2015. Some physical and chemical properties of compost. Int. J. Waste Res. 5:1.
  • Schaub-Szabo, S.M., and J.J. Leonard. 1999. Characterizing the bulk density of compost. Compost. Sci. Util. 7 (4):15–24. doi:10.1080/1065657X.1999.10701980.
  • Sharma, S., R. Padbhushan, and U. Kumar. 2019. Integrated nutrient management in rice–WheatCropping system: An evidence on sustainability in the Indian subcontinent through meta-analysis. Agronomy 9 (2):71. doi:10.3390/agronomy9020071.
  • Sharma, S. and K.W. Shah. 2005. Generation and disposal of solid waste in Hoshangabad. In Book of Proceedings of the Second International Congress of Chemistry and Environment, Indore, India, 749–51.
  • Song, X., M. Liu, D. Wu, L. Qi, C. Ye, J. Jiao, and F. Hu. 2014. Heavy metal and nutrient changes during vermicomposting animal manure spiked with mushroom residues. Waste Manage. 34 (11):1977–83. doi:10.1016/j.wasman.2014.07.013.
  • Sudha, B., and K.K. Kapoor. 2000. Vermicomposting of crop residues and cattle dung with Eisenia fetida. Bioresour. Technol. 73 (2):95–98. doi:10.1016/S0960-8524(99)00173-X.
  • Suthar, S. 2008. Development of a novel epigeic-anecic-base polyculture vermireactor for efficient treatment of municipal sewage water sludge. Int. J. Environ Waste Manage. 2 (1/2):84–101. doi:10.1504/IJEWM.2008.016994.
  • Tabatabai, M.A., and J.M. Bremner. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1 (4):301–07. doi:10.1016/0038-0717(69)90012-1.
  • Venkatesh, R.M., and T. Eevera. 2008. Mass reduction and recovery of nutrients through vermicomposting of fly ash. Appl. Ecol. Environ. Res. 6 (1):77–84. doi:10.15666/aeer/0601_077084.
  • Viaene, J., V. Nelissen, B. Reubens, K. Willekens, F. Driehuis, S. De Neve, and B. Vandecasteele. 2017. Improving the product stability and fertilizer value of cattle slurry solid fraction through co-composting or co-ensiling. Waste Manage. 61:61. doi:10.1016/j.wasman.2016.12.037.
  • Wang, P., C.M. Changa, M.E. Watson, W.A. Dick, Y. Chen, and H.A.J. Hoitink. 2004. Maturity indices for composted dairy and pig manures. Soil Biol. Biochem. 36:767–76. doi:10.1016/j.soilbio.2003.12.012.
  • Wei, Y., Z. Wei, Z. Cao, Y. Zhao, X. Zhao, Q. Lu, X. Wang, and X. Zhang. 2016. A regulating method for the distribution of phosphorus fractions based on environmental parameters related to the key phosphate-solubilizing bacteria during composting. Bioresour. Technol. 211:610–17. doi:10.1016/j.biortech.2016.03.141.
  • Wong, J.W.C., S.O. Fung, and A. Selvam. 2009. Coal fly ash and lime addition enhances the rate and efficiency of decomposition of food waste during composting. Bioresour. Technol. 100 (13):3324–31. doi:10.1016/j.biortech.2009.01.063.
  • Yatoo, A.M., S.A. Bhat, M.N. Ali, Z.A. Baba, and Z. Zaheen. 2022. Production of nutrient-enriched vermicompost from aquatic macrophytes supplemented with kitchen waste: Assessment of nutrient changes, phytotoxicity, and earthworm biodynamics. Agronomy 12 (6):1303. doi:https://doi.org/10.3390/agronomy12061303.
  • Zmora-Nahuma, S., O. Markovitcha, J. Tarchitzkyb, and Y. Chen. 2005. Dissolved organic carbon (DOC) as a parameter of compost maturity. Soil Biol. Biochem. 37 (11):2109–16. doi:10.1016/j.soilbio.2005.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.