706
Views
0
CrossRef citations to date
0
Altmetric
Technical paper

Fugitive gypsum dust deposition on a neighboring wildlife refuge, Antioch Dunes, California, USA

ORCID Icon, ORCID Icon, ORCID Icon, , & ORCID Icon
Pages 813-828 | Received 20 Jun 2023, Accepted 24 Aug 2023, Published online: 22 Sep 2023

References

  • Al-Alam, J., M. Millet, M. Harb, E. Ajoury, S. Tokajuan, and M. Wazne. 2023. Field evaluation of metal bioaccumulation in the gastropod Helix aspersa at agricultural and industrial sites in lebanon. Environ. Monit. Assess. 195 (1):197. doi:10.1007/s10661-022-10791-5.
  • Arnold, R., B.F. Atwater, and J. Powell. 1983. The Antioch Dunes. Washington, DC: Report to the U.S. Fish and Wildlife Service.
  • Atwater, B.F. 1982. Geologic factors in the prehistoric establishment of organisms endemic to eolian dunes near Antioch, California. Memo To The U.S. Fish And Wildlife Service From The U.S. Geological Survey. Menlo Park, California. Accessed February 26, 2023. https://ecos.fws.gov/ServCat/DownloadFile/49368?Reference=48954.
  • Belmaker, M. 2018. Dental microwear of small mammals as a high resolution paleohabitat proxy: Opportunities and challenges. J. Archaeo. Sci. Rep. 18:824–38. doi:10.1016/j.jasrep.2018.02.034.
  • Bondietti, E.A., F.O. Hoffman, and I.L. Larsen. 1984. Air -to-vegetation transfer rates of natural submicron aerosols. J. Environ. Radioact. 1 (1):5–27. doi:10.1016/0265-931X(84)90009-2.
  • Chaudhary, I.J., and D. Rathore. 2019. Dust pollution: Its removal and effect on foliage physiology of urban trees. Sustain. Cities Soc. 51:101696. doi:10.1016/j.scs.2019.101696.
  • Cooper, W.S. 1967. Coastal dunes of California. Geol. Soc. Am. Mem. 104. doi:10.1130/MEM104.
  • da Costa Silva, T.A., M.M. de Paula, W.S. Silva, and G.A. Lacorte. 2022. Can moderate heavy metal soil contaminations due to cement production influence the surrounding soil bacterial communities? Ecotoxicology 31 (1):134–48. doi:10.1007/s10646-021-02494-3.
  • Di Nicola, F., E. Brattich, and S. Di Sabatino. 2022. A new approach for roughness representation within urban dispersion models. Atmos. Environ. 283:119181. doi:10.1016/j.atmosenv.2022.119181.
  • Eberl, D.D., and D.B. Smith. 2009. Mineralogy of soils from two continental-scale transects across the U.S. and Canada and its relation to soil geochemistry and climate. Appl. Geochem. 24 (8):1394–404. doi:10.1016/j.apgeochem.2009.04.010.
  • EPA (U.S. Environmental Protection Agency). 2017. Ambient Monitoring Technology Information Center (AMTIC). https://www.epa.gov/amtic.
  • Farmer, A.M. 1993. The effects of dust on vegetation—a review. Environ. Pollut. 79 (1):63–75. doi:10.1016/0269-7491(93)90179-R.
  • Gill, T.E. 1996. Eolian sediments generated by anthropogenic disturbance of playas: Human impacts on the geomorphic system and geomorphic impacts on the human system. Geomorphology 17 (1):207–28. doi:10.1016/0169-555X(95)00104-D.
  • Hassanizade, S., and S. Jafari. 2021. Changes in physicochemical properties of old stabilized sand dunes due to atmospheric sediments and diversity of clay minerals in a dry area. Aeolian Res. 50:100674. doi:10.1016/j.aeolia.2021.100674.
  • He, C., S. Li, Y. Zhang, and M. Wu. 2022. Role of roadside vegetation as a passive method for the reduction of urban water-insoluble fine particle and impacts brought by different planting patterns. Air Qual. Atmos. Health 15 (11):1923–40. doi:10.1007/s11869-022-01226-8.
  • Janhäll, S. 2015. Review on urban vegetation and particle air pollution – deposition and dispersion. Atmos. Environ. 105:130–37. doi:10.1016/j.atmosenv.2015.01.052.
  • Kahle, D., and H. Wickham. 2013. Ggmap: Spatial visualization with ggplot2. R J. 5 (1):144–61. http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf.
  • Khalilimoghadam, B., S.A. Siadat, A. Yusefi, and K. Negaresh. 2021. Atmospheric particle adsorption rates of plants in an industrial city of southwest Iran. Aeolian Res. 53:100752. doi:10.1016/j.aeolia.2021.100752.
  • Landis, J.D., C.E. Renshaw, and J.M. Kaste. 2014. Quantitative retention of atmospherically deposited elements by native vegetation is traced by the fallout radionuclides 7Be and 210Pb. Environ. Sci. Technol. 48 (20):12022–30. doi:10.1021/es503351u.
  • Liu, D.H.F., and B.G. Liptak. 2019. Air pollution. Boca Raton: CRC Press. doi:10.1201/9781315137056.
  • Lukowski, A., R. Popek, R. Jagiello, E. Maderek, P. Karolewski, A. Lukowski, R. Jagiello, and E. Maderek. 2018. Particulate matter on two Prunus spp. decreases survival and performance of the folivorous beetle Gonioctena quinquepunctata. Environ. Sci. Pollut. R. 25 (17):16629–39. doi:10.1007/s11356-018-1842-4.
  • Mandeville, C.W. 2010. Sulfur: A ubiquitous and useful tracer in Earth and planetary sciences. Elements 6 (2):75–80. doi:10.2113/gselements.6.2.75.
  • McNally, A.M. (2014). Historical Geography of the Antioch Dunes, Antioch, California, with a Focus on Current Impacts to the Habitat and Population of the Federally Endangered Lange’s Metalmark Butterfly (Apodemia Mormo Langei). Ph.D. diss., Davis, California, USA: University of California, Davis.
  • McTainsh, G., and C. Strong. 2007. The role of aeolian dust in ecosystems. Geomorphology 89 (1–2):39–54. doi:10.1016/j.geomorph.2006.07.028.
  • Mori, J., H.M. Hanslin, G. Burchi, and A. Sæbø. 2015. Particulate matter and element accumulation on coniferous trees at different distances from a highway. Urban For. Urban Gree. 14 (1):170–77. doi:10.1016/j.ufug.2014.09.005.
  • Osborne, K.H., and T. Longcore. 2021. Effect of gypsum dust on lepidopterous larvae. Ecotox. Environ. Safe. 228:113027. doi:10.1016/j.ecoenv.2021.113027.
  • Owonikoko, M.W., B.O. Emikpe, and S.B. Olaleye. 2021. Standardized experimental model for cement dust exposure; tissue heavy metal bioaccumulation and pulmonary pathological changes in rats. Toxicol. Rep. 8:1169–78. doi:10.1016/j.toxrep.2021.06.001.
  • Patel, K., M. Chaurasia, and K.S. Rao. 2023. Urban dust pollution tolerance indices of selected plant species for development of urban greenery in Delhi. Environ. Monit. Assess. 195 (1):16. doi:10.1007/s10661-022-10608-5.
  • Playà, E., and L. Rosell. 2005. The celestite problem in gypsum Sr geochemistry: An evaluation of purifying methods of gypsiferous samples. Chem. Geol. 221 (1):102–16. doi:10.1016/j.chemgeo.2005.04.006.
  • R Core Team. 2022. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Rahul, J. 2022. Stone crusher dust and its impact: Accumulation efficiency of some woody tree species around the stone crusher plant (SCP). In Sustainable energy-water-environment nexus in deserts, ed. E. Heggy, V. Bermudez, and M. Vermeersch, 621–27. Cham: Advances in Science, Technology & Innovation. Springer. doi:10.1007/978-3-030-76081-6_78.
  • Rea, P., L. Ma, T.E. Gill, J. Gardea-Torresdey, C. Tamez, and L. Jin. 2020. Tracing gypsiferous white sands aerosols in the shallow critical zone in the northern Sacramento mountains, new mexico using Sr/Ca and 87Sr/86Sr ratios. Geoderma 372:114387. doi:10.1016/j.geoderma.2020.114387.
  • Richmond, O.M.W., D. Kelly, and T. Longcore. 2015. Lange’s Metalmark butterfly threat assessment and ranking of potential management alternatives. Final Report. Sacramento, CA, USA: U.S. Fish and Wildlife Service, Pacific Southwest Region, National Wildlife Refuge System Inventory and Monitoring Initiative.
  • Seinfeld, J.H., and S. Pandis. 1998. Atmospheric chemistry and physics. New York: John Wiley & Sons.
  • Shahid, M., C. Dumat, S. Khalid, E. Schreck, T. Xiong, and N.K. Niazi. 2017. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 325:36–58. doi:10.1016/j.jhazmat.2016.11.063.
  • Smith, J., and K. Lee. 2003. Soil as a source of dust and implications for human health. Adv. Agron. 80:1–32.
  • Solomon, P.A., D. Crumpler, J.B. Flanagan, R.K.M. Jayanty, E.E. Rickman, and C.E. McDade. 2014. US National PM2.5 chemical Speciation monitoring networks-CSN and IMPROVE: description of networks. J. Air Waste Manag. Assoc. 64:1410–38. doi:10.1080/10962247.2014.956904.
  • Stefanov, W., M. Ramsey, P. Christensen, and W.L. Sttefanov. 2003. Identification of fugitive dust generation, transport, and deposition areas using remote sensing. Envi. Eng. Geosci. 9 (2):151–65. doi:10.2113/9.2.151.
  • Tallis, M., G. Taylor, D. Sinnett, and P. Freer-Smith. 2011. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 103 (2):129–38. doi:10.1016/j.landurbplan.2011.07.003.
  • Terzaghi, E., E. Wild, G. Zacchello, B.E.L. Cerabolini, K.C. Jones, and A. Di Guardo. 2013. Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmos. Environ. 74:378–84. doi:10.1016/j.atmosenv.2013.04.013.
  • Tiwari, A., and P. Kumar. 2022. Quantification of green infrastructure effects on airborne nanoparticles dispersion at an urban scale. Sci. Total Environ. 838:155778. doi:10.1016/j.scitotenv.2022.155778.
  • Ungar, P.S., M.F. Teaford, K.E. Glander, and R.F. Pastor. 1995. Dust accumulation in the canopy: A potential cause of dental microwear in primates. Am. J. Phys. Anthropol. 97 (2):93–99. doi:10.1002/ajpa.1330970202.
  • USFWS (U.S. Fish and Wildlife Service). 2002. Antioch Dunes National Wildlife refuge comprehensive conservation plan. Washington, DC: U.S. Fish & Wildlife Service.
  • Vanderstock, A.M., T. Latty, R.J. Leonard, and D.F. Hochuli. 2019. Mines over matter: Effects of foliar particulate matter on the herbivorous insect, helicoverpa armigera. J. Appl. Entomol. 143 (1–2):77–87. doi:10.1111/jen.12560.
  • Wagner, J., and D. Leith. 2001a. Passive aerosol sampler. Part I: Principle of operation. Aerosol Sci. Technol. 34 (2):186–92. doi:10.1080/027868201300034808.
  • Wagner, J., and D. Leith. 2001b. Passive aerosol sampler. Part II: Wind tunnel experiments. Aerosol Sci. Technol. 34 (2):193–201. doi:10.1080/027868201300034826.
  • Weber, F., I. Kowarik, and I. Säumel. 2014. Herbaceous plants as filters: Immobilization of particulates along urban street corridors. Environ. Pollut. 186:234–40. doi:10.1016/j.envpol.2013.12.011.
  • West, I. 1973. Vanished evaporites; significance of strontium minerals. J. Sediment. Res. 43 (1):278–79. doi:10.1306/74D72748-2B21-11D7-8648000102C1865D.
  • White, W.H. 2008. Chemical markers for sea salt in IMPROVE aerosol data. Atmos. Environ. 42 (2):261–74. doi:10.1016/j.atmosenv.2007.09.040.
  • Xia, Y., K. Mitchell, M. Ek, J. Sheffield, B. Cosgrove, E. Wood, L. Luo, C. Alonge, H. Wei, J. Meng, et al. 2012. Continental-scale water and energy flux analysis and validation for the North American land data assimilation system project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. 117 (D3):D03109. doi:10.1029/2011JD016048.
  • Zaremba, L.L., and J.J. Carroll. 1999. Summer wind flow regimes over the Sacramento Valley. J. Appl. Meteorol. 38:1463–73. doi:10.1175/1520-0450(1999)038<1463:SWFROT>2.0.CO;2.
  • Zocche, J.J., L.A. Da Silva, A.P. Damiani, R.Á. Mendonça, P.B. Peres, C.E.I. dos Santos, R. Debastiani, J.F. Dias, V.M. de Andrade, and R.A. Pinho. 2014. Heavy-metal content and oxidative damage in hypsiboas faber: The impact of coal-mining pollutants on amphibians. Arch. Environ. Contam. Toxicol. 66 (1):69–77. doi:10.1007/s00244-013-9949-6.