216
Views
0
CrossRef citations to date
0
Altmetric
Technical Paper

Thermal separation of plastic components from waste crystalline silicon solar cells: Thermogravimetric characteristics and thermokinetics

ORCID Icon, , ORCID Icon &
Pages 853-864 | Received 25 May 2023, Accepted 05 Sep 2023, Published online: 02 Nov 2023

References

  • Ardente, F., C.E.L. Latunussa, and G.A. Blengini. 2019. Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. J. Waste Manage. 91:156–67. doi:10.1016/j.wasman.2019.04.059.
  • Cao, Q., G. Yuan, L. Yin, D. Chen, P. He, and H. Wang. 2016. Morphological characteristics of polyvinyl chloride (PVC) dechlorination during pyrolysis process: Influence of PVC content and heating rate. J. Waste Manage. 58:241–49. doi:10.1016/j.wasman.2016.08.031.
  • Chakankar, M., C.H. Su, and H. Hocheng. 2019. Leaching of metals from end-of-life solar cells. Environ. Sci. Pollut. Res. 26 (29):29524–31. doi:10.1007/s11356-018-1918-1.
  • Chung, J., B. Seo, J. Lee, and J.Y. Kim. 2021. Comparative analysis of I2-KI and HNO3 leaching in a life cycle perspective: Towards sustainable recycling of end-of-life c-Si PV panel. J. Hazard. Mater. 404 (B):123989. doi:10.1016/j.jhazmat.2020.123989.
  • Coats, A. W., and J.P. Redfern. 1964. Kinetic parameters from thermogravimetric data. Nature 201 (4914):68–69. doi:10.1038/201068a0.
  • Corcelli, F., M. Ripa, E. Leccisi, V. Cigolotti, V. Fiandra, G. Graditi, L. Sannino, M. Tammaro, and S. Ulgiati. 2016. Sustainable urban electricity supply chain – indicators of material recovery and energy savings from crystalline silicon photovoltaic panels end-of-life. Ecol. Indic. 94 (3):37–51. doi:10.1016/j.ecolind.2016.03.028.
  • Dias, P.R., M.G. Benevit, and H.M. Veit. 2016b. Photovoltaic solar panels of crystalline silicon: Characterization and separation. Waste Manage. Res. 34 (3):235–45. doi:10.1177/0734242x15622812.
  • Dias, P., S. Javimczik, M. Benevit, and H. Veit. 2017. Recycling WEEE: Polymer characterization and pyrolysis study for waste of crystalline silicon photovoltaic modules. J. Waste Manage. 60:716–22. doi:10.1016/j.wasman.2016.08.036.
  • Dias, P., S. Javimczik, M. Benevit, H. Veit, and A.M. Bernardes. 2016a. Recycling WEEE: Extraction and concentration of silver from waste crystalline silicon photovoltaic modules. J. Waste Manage. 57:220–25. doi:10.1016/j.wasman.2016.03.016.
  • Dias, P.R., L. Schmidt, L.B. Gomes, A. Bettanin, H.M. Veit, and A.M. Bernardes. 2018. Recycling waste crystalline silicon photovoltaic modules by electrostatic separation. J. Sustain. Metall. 4:176–86. doi:10.1007/s40831-018-0173-5.
  • Doi, T., I. Tsuda, H. Unagida, A. Murata, K. Sakuta, and K. Kurokawa. 2001. Experimental study on PV module recycling with organic solvent method. Sol. Energy Mater. Sol. Cells 67 (1–4):397–403. doi:10.1016/s0927-0248(00)00308-1.
  • Dong, N., H. Hui, S. Li, and L. Du. 2023. Study on preparation of aromatic-rich oil by thermal dechlorination and fast pyrolysis of PVC. J. Anal. Appl. Pyrolysis. 169:105817. doi:10.1016/j.jaap.2022.105817.
  • Fernandez, A., L. Rodriguez-Ortiz, D. Asensio, R. Rodriguez, and G. Mazza. 2020. Kinetic analysis and thermodynamics properties of air/steam gasifcation of agricultural waste. J. Environ. Chem. Eng. 8 (4):103829. doi:10.1016/j.jece.2020.103829.
  • Fernandez, A., A. Saffe, G. Mazza, and R. Rodriguez. 2017. Kinetic analysis of regional agro-industrial waste combustion. Biofuels 8 (1):71–80. doi:10.1080/17597269.2016.1200865.
  • Fernandez, A., A. Saffe, R. Pereyra, G. Mazza, and R. Rodriguez. 2016. Kinetic study of regional agro-industrial wastes pyrolysis using non-isothermal TGA analysis. Appl. Therm. Eng. 106:1157–64. doi:10.1016/j.applthermaleng.2016.06.084.
  • Fernandez, A., P. Sette, M. Echegaray, J. Soria, D. Salvatori, G. Mazza, and R. Rodriguez. 2022. Clean recovery of phenolic compounds, pyro-gasification thermokinetics, and bioenergy potential of spent agro-industrial bio-wastes. Biomass. Conv. Bioref. 13 (14):12509–26. doi:10.1007/s13399-021-02197-z.
  • Guo, J., X. Liu, J. Yu, C. Xu, Y. Wu, D.A. Pan, and R.A. Senthil. 2021. An overview of the comprehensive utilization of silicon-based solid waste related to PV industry. Resour. Conserv. Recycl. 169:105450. doi:10.1016/j.resconrec.2021.105450.
  • Huang, W.H., W.J. Shin, L. Wang, W.C. Sun, and M. Tao. 2017. Strategy and technology to recycle wafer-silicon solar modules. Sol. Energy 144:22–31. doi:10.1016/j.solener.2017.01.001.
  • Jia, C., J. Chen, J. Liang, S. Song, K. Liu, A. Jiang, and Q. Wang. 2020. Pyrolysis characteristics and kinetic analysis of rice husk. J. Therm. Anal. Calorim. 139 (1):577–87. doi:10.1007/s10973-019-08366-7.
  • Jung, B., J. Park, D. Seo, and N. Park. 2016. Sustainable System for raw-metal recovery from crystalline silicon solar panels: From noble-metal extraction to lead removal. ACS Sustain. Chem. Eng. 4 (8):4079–83. doi:10.1021/acssuschemeng.6b00894.
  • Kang, S., S. Yoo, J. Lee, B. Boo, and H. Ryu. 2012. Experimental investigations for recycling of silicon and glass from waste photovoltaic modules. Renew. Energ. 47:152–59. doi:10.1016/j.renene.2012.04.030.
  • Khajuria, A., V.A. Atienza, S. Chavanich, W. Henning, I. Islam, U. Kral, M. Liu, X. Liu, I.K. Murthy, T.D.T. Oyedotun, et al. 2022. Accelerating circular economy solutions to achieve the 2030 agenda for sustainable development goals. Circ. Econ. 1 (1):100001. doi:10.1016/j.cec.2022.100001.
  • Kim, Y., J.I. Oh, S.S. Lee, K.H. Lee, J. Lee, and E.E. Kwon. 2019. Decontamination of petroleum-contaminated soil via pyrolysis under carbon dioxide atmosphere. J. Clean. Prod. 236:117724. doi:10.1016/j.jclepro.2019.117724.
  • Kissinger, H. E. 1957. Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (11):1702–06. doi:10.1021/ac60131a045.
  • Klugmann-Radziemska, E., and P. Ostrowski. 2010. Chemical treatment of crystalline silicon solar cells as a method of recovering pure silicon from photovoltaic modules. Renew. Energ. 35 (8):1751–59. doi:10.1016/j.renene.2009.11.031.
  • Klugmann-Radziemska, E., P. Ostrowski, K. Drabczyk, P. Panek, and M. Szkodo. 2010. Experimental validation of crystalline silicon solar cells recycling by thermal and chemical methods. Sol. Energy Mater. Sol. Cells 94 (12):2275–82. doi:10.1016/j.solmat.2010.07.025.
  • Lee, J. K., J.S. Lee, Y.S. Ahn, G.H. Kang, H.E. Song, M.G. Kang, Y.H. Kim, and C.H. Cho. 2018. Simple pretreatment processes for successful reclamation and remanufacturing of crystalline silicon solar cells. Prog. Photovolt. 26 (3):179–87. doi:10.1002/pip.2963.
  • Lee, J. K., J.S. Lee, Y.S. Ahn, G.H. Kang, H.E. Song, J.I. Lee, M.G. Kang, and C.H. Cho. 2017. Photovoltaic performance of c-Si wafer reclaimed from end-of-life solar cell using various mixing ratios of HF and HNO3. Sol. Energy Mater. Sol. Cells 160:301–06. doi:10.1016/j.solmat.2016.10.034.
  • Liu, K., Q. Tan, J. Yu, and M. Wang. 2023. A global perspective on e-waste recycling. Circ. Econ. 2:100028. doi:10.1016/j.cec.2023.100028.
  • Luo, M., F. Liu, Z. Zhou, L. Jiang, M. Jia, Y. Lai, J. Li, and Z. Zhang. 2021. A comprehensive hydrometallurgical recycling approach for the environmental impact mitigation of EoL solar cells. J. Environ. Chem. Eng. 9 (6):106830. doi:10.1016/j.jece.2021.106830.
  • Marcilla, A., and M. Beltrán. 1995. Kinetic study of the thermal decomposition of polystyrene and polyethylene-vinyl acetate graft copolymers by thermogravimetric analysis. Polym. Degrad. And Stab. 50 (1):117–24. doi:10.1016/0141-3910(95)00138-c.
  • Marcilla, A., A. Gómez, and S. Menargues. 2005. TG/FTIR study of the thermal pyrolysis of EVA copolymers. J. Anal. Appl. Pyrolysis. 74 (1):224–30. doi:10.1016/j.jaap.2004.09.009.
  • Marcilla, A., A. Gómez, and J.A. Reyes-Labarta. 2001. MCM-41 catalytic pyrolysis of ethylene–vinyl acetate copolymers: Kinetic model. Polymer. 42 (19):8103–11. doi:10.1016/s0032-3861(01)00277-4.
  • Matsubara, T., M.A. Uddin, Y. Kato, T. Kawanishi, and Y. Hayashi. 2018. Chemical treatment of copper and aluminum derived from waste crystalline silicon solar cell modules by mixed acids of HNO3 and HCl. J. Sustain. Metall. 4 (3):378–87. doi:10.1007/s40831-018-0184-2.
  • Mcgrattan, B.J. 1994. Examining the decomposition of ethylene-vinyl acetate copolymers using TG/GC/IR. Appl. Spectrosc. 48 (12):1472–76. doi:10.1366/0003702944027750.
  • Nain, P., and A. Kumar. 2022. A state-of-art review on end-of-life solar photovoltaics. J. Clean. Prod. 343:130978. doi:10.1016/j.jclepro.2022.130978.
  • Nevala, S.-M., J. Hamuyuni, T. Junnila, T. Sirviö, S. Eisert, B.P. Wilson, R. Serna-Guerrero, and M. Lundström. 2019. Electro-hydraulic fragmentation vs conventional crushing of photovoltaic panels – impact on recycling. J. Waste Manage. 87:43–50. doi:10.1016/j.wasman.2019.01.039.
  • O’Shea, M.L., C. Morterra, and M.J.D. Low. 1990. Spectroscopic studies of carbons. XIV. The vacuum pyrolysis of non-oxygen containing materials: PVF. Mater Chem. Phys. 25 (5):501–21. doi:10.1016/0254-0584(90)90115-q.
  • Pagnanelli, F., E. Moscardini, P. Altimari, F.C.S.M. Padoan, T.A. Atia, F. Beolchini, A. Amato, and L. Toro. 2019. Solvent versus thermal treatment for glass recovery from end of life photovoltaic panels. Environ. Economic Assessment. J. Environ. Manage. 248:109313. doi:10.1016/j.jenvman.2019.109313.
  • Pagnanelli, F., E. Moscardini, G. Granata, T.A. Atia, P. Altimari, T. Havlik, and L. Toro. 2017. Physical and chemical treatment of end of life panels: An integrated automatic approach viable for different photovoltaic technologies. J. Waste Manage. 59:422–31. doi:10.1016/j.wasman.2016.11.011.
  • Paiano, A. 2015. Photovoltaic waste assessment in Italy. Renew. Sust. Energ. Rev. 41:99–112. doi:10.1016/j.rser.2014.07.208.
  • Pan, J., H. Jiang, T. Qing, J. Zhang, and K. Tian. 2021. Transformation and kinetics of chlorine-containing products during pyrolysis of plastic wastes. Chemosphere 284:131348. doi:10.1016/j.chemosphere.2021.131348.
  • Park, J., W. Kim, N. Cho, H. Lee, and N. Park. 2016. An eco-friendly method for reclaimed silicon wafers from a photovoltaic module: From separation to cell fabrication. Green Chem. 18 (6):1706–14. doi:10.1039/C5GC01819F.
  • Sener, C., and V. Fthenakis. 2014. Energy policy and financing options to achieve solar energy grid penetration targets: Accounting for external costs. Renew. Sust. Energ. Rev. 32:854–68. doi:10.1016/j.rser.2014.01.030.
  • Seo, B., J.Y. Kim, and J. Chung. 2021. Overview of global status and challenges for end-of-life crystalline silicon photovoltaic panels: A focus on environmental impacts. J. Waste Manage. 128:45–54. doi:10.1016/j.wasman.2021.04.045.
  • Šesták, J., and G. Berggren. 1971. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta. 3 (1):1–12. doi:10.1016/0040-6031(71)85051-7.
  • Shin, J., J. Park, and N. Park. 2017. A method to recycle silicon wafer from end-of-life photovoltaic module and solar panels by using recycled silicon wafers. Sol. Energy Mater. Sol. Cells 162:1–6. doi:10.1016/j.solmat.2016.12.038.
  • Sica, D., O. Malandrino, S. Supino, M. Testa, and M.C. Lucchetti. 2018. Management of end-of-life photovoltaic panels as a step towards a circular economy. Renew. Sust. Energ. Rev. 82 (3):2934–45. doi:10.1016/j.rser.2017.10.039.
  • Sim, Y., Y.B. Tay, H.K. Pham, and N. Mathews. 2023. A facile crush-and-sieve treatment for recycling end-of-life photovoltaics. J. Waste Manage. 156:97–106. doi:10.1016/j.wasman.2022.11.023.
  • Tao, J., and S. Yu. 2015. Review on feasible recycling pathways and technologies of solar photovoltaic modules. Sol. Energy Mater. Sol. Cells 141:108–24. doi:10.1016/j.solmat.2015.05.005.
  • Torres-Sciancalepore, R., D. Asensio, D. Nassini, A. Fernandez, R. Rodriguez, G. Fouga, and G. Mazza. 2022a. Assessment of the behavior of Rosa rubiginosa seed waste during slow pyrolysis process towards complete recovery: Kinetic modeling and product analysis. Energy Convers. Manage. 272:116340. doi:10.1016/j.enconman.2022.116340.
  • Torres-Sciancalepore, R., A. Fernandez, D. Asensio, M. Riveros, M. Fabani, G. Fouga, R. Rodriguez, and G. Mazza. 2022b. Kinetic and thermodynamic comparative study of quince bio-waste slow pyrolysis before and after sustainable recovery of pectin compounds. Energy Convers. Manage. 252:115076. doi:10.1016/j.enconman.2021.115076.
  • Wang, R., E. Song, C. Zhang, X. Zhuang, E. Ma, J. Bai, W. Yuan, and J. Wang. 2019. Pyrolysis-based separation mechanism for waste crystalline silicon photovoltaic modules by a two-stage heating treatment. RSC Adv. 9 (32):18115–23. doi:10.1039/c9ra03582f.
  • Wang, R., and Z. Xu. 2014. Pyrolysis mechanism for recycle renewable resource from polarizing film of waste liquid crystal display panels. J. Hazard. Mater. 278:311–19. doi:10.1016/j.jhazmat.2014.05.095.
  • Wu, J., T. Chen, X. Luo, D. Han, Z. Wang, and J. Wu. 2014a. TG/FTIR analysis on co-pyrolysis behavior of PE, PVC and PS. J. Waste Manage. 34 (3):676–82. doi:10.1016/j.wasman.2013.12.005.
  • Wu, P., B. Xia, and X. Zhao. 2014b. The importance of use and end-of-life phases to the life cycle greenhouse gas (GHG) emissions of concrete-A review. Renew. Sust. Energ. Rev. 37:360–69. doi:10.1016/j.rser.2014.04.070.
  • Xu, X., D. Lai, W. Wang, and Y. Wang. 2022. A systematically integrated recycling and upgrading technology for waste crystalline silicon photovoltaic module. Resour. Conserv. Recycl. 182:106284. doi:10.1016/j.resconrec.2022.106284.
  • Yi, Y.K., H.S. Kim, T. Tran, S.K. Hong, and M.J. Kim. 2014. Recovering valuable metals from recycled photovoltaic modules. J. Air Waste Manag. Assoc. 64 (7):797–807. doi:10.1080/10962247.2014.891540.
  • Zhang, R., Y. Li, Y. Cai, Q. Han, T. Zhang, Y. Liu, K. Zeng, and C. Zhao. 2020. Photocatalytic poly(vinylidene fluoride) membrane of Ag3PO4/GO/APTES for water treatment. Colloid. Surfaces A. 597:124779. doi:10.1016/j.colsurfa.2020.124779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.