109
Views
0
CrossRef citations to date
0
Altmetric
REVIEW PAPER

Decision-making in biogas production projects: Paradigms and prospection

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 416-438 | Received 02 Aug 2023, Accepted 25 Mar 2024, Published online: 31 May 2024

References

  • Agbejule, A., A. Shamsuzzoha, K. Lotchi, and K. Rutledge. 2021. Application of multi-criteria decision-making process to select waste-to-energy technology in developing countries: The case of Ghana. Sustainability (Switzerland) 13 (22):12863. doi:10.3390/su132212863.
  • Ammenberg, J., S. Anderberg, T. Lonnqvist, S. Gronkvist, and T. Sandberg. 2018. Biogas in the transport sector—actor and policy analysis focusing on the demand side in the Stockholm region. Resour. Conserv. Recycl. 129:70–80. doi:10.1016/j.resconrec.2017.10.010.
  • Arodudu, O.T., K. Helming, A. Voinov, and H. Wiggering. 2017. Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production–A case study of ethanol and biogas production from maize feedstock. Appl. Energy 198:426–39. doi:10.1016/j.apenergy.2017.02.017.
  • Bardin, L. 2004. Análise de conteúdo. Vol. 70. Lisboa: Edições.
  • Bär, R., and A. Ehrensperger. 2018. Accounting for the boundary problem at subnational level: The supply–demand balance of biomass cooking fuels in Kitui County, Kenya. Resources 7 (1):11. doi:10.3390/resources7010011.
  • Barragán-Escandón, A., J.M.O. Ruiz, J.D.C. Tigre, and E.F. Zalamea-León. 2020. Assessment of power generation using biogas from landfills in an equatorial tropical context. Sustain.(Switzerland) 12 (7). doi: 10.3390/su12072669.
  • Bartoli, A., N.B. Fradj, M. Gałczyńska, A. Jędrejek, and K. Shu. 2020. Spatial economic modeling of the waste-driven agricultural biogas in Lubelskie Region. Poland Environ. Clim. Technol. 24 (3):545–59. doi:10.2478/rtuect-2020-0123.
  • Berhe, M., D. Hoag, and G. Tesfay. 2017. Factors influencing the adoption of biogas digesters in rural Ethiopia. Energy. Sustain. Soc. 7 (1):1–11. doi:10.1186/s13705-017-0112-5.
  • Bhatt, A.H., and L. Tao. 2020. Economic perspectives of biogas production via anaerobic digestion. Bioengineering 7 (3). doi: 10.3390/bioengineering7030074.
  • Biernaski, I., and C.L. Silva. 2018. Main variables of Brazilian public policies on biomass use and energy. Braz. Arch. Biol. Technol. 61. doi:10.1590/1678-4324-smart-2018000310.
  • Bojesen, M., L. Boerboom, and H. Skov-Petersen. 2015. Towards a sustainable capacity expansion of the Danish biogas sector. Land Use. Policy 42:264–77. doi:10.1016/j.landusepol.2014.07.022.
  • Brasil. 2010. LEI FEDERAL Nº 12.305 DE AGOSTO DE 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei no 9.605, de 12 de fevereiro de 1998; e dá outras providências.” Brasil.
  • Brenes-Peralta, L., M. F. Jiménez-Morales, R. Campos-Rodríguez, F. De Menna, and M. Vittuari. 2020. Decision-making process in the circular economy: A case study on University Food Waste-to-Energy Actions in Latin America. Energies. 13:2291. doi:10.3390/en13092291.
  • Chaher, N., S. Hemidat, Q. Thabit, M. Chakchouk, A. Nassour, M. Hamdi, and M. Nelles. 2020. Potential of sustainable concept for handling organic waste in Tunisia. Sustainability (Switzerland) 12 (19):8167. doi:10.3390/su12198167.
  • Cheraghalipour, A., and E. Roghanian. 2022. A bi-level model for a closed-loop agricultural supply chain considering biogas and compost. Environ. Dev. Sustain. 1–47. doi:10.1007/s10668-022-02397-1.
  • Chodkowska-Miszczuk, J., S. Martinat, M. Kulla, and L. Novotny. 2020. Renewables projects in peripheries: Determinants, challenges and perspectives of biogas plants–insights from Central European countries. Reg. Stud. Reg. Sci. 7 (1):362–81. doi:10.1080/21681376.2020.1807399.
  • Chrispim, M.C., F.M. de-Souza, M. Scholz, and M.A. Nolasco. 2020. A framework for sustainable planning and decision-making on resource recovery from wastewater: Showcase for São Paulo megacity. Water 12 (12):3466. doi:10.3390/w12123466.
  • Ciapala, B., J. Jurasz, M. Janowski 2017. Decision support for optimal location of local heat source for small district heating system on the example of biogas plant. E3S web of conferences. doi:10.1051/e3sconf/20171700016.
  • Cibiogás. 2021. Nota Técnica: N° 001/2021 – Panorama do Biogás no Brasil 2020. Foz do Iguaçu, Março de.
  • Curry, R., M.N. Pérez-Camacho, R. Brennan, S. Gilkinson, T.J. Cromie, P. Foster, B.M. Smyth, A.M. Orozco, E. Groom, S.T. Murray, et al. 2018. Quantification of anaerobic digestion feedstocks for a regional bioeconomy. Proceedings of the Institution of Civil Engineers - Waste and Resource Management.
  • Ddiba, D., K. Andersson, A. Rosemarin, H. Schulte-Herbruggen, and S. Dickin. 2022. The circular economy potential of urban organic waste streams in low-and middle-income countries. Environ. Dev. Sustain. 24 (1):1116–44. doi:10.1007/s10668-021-01487-w.
  • De Medina-Salas, L., E. Castillo-González, M.R. Giraldi-Díaz, and L.O. Jamed-Boza. 2019. Valorisation of the organic fraction of municipal solid waste. Waste Manage. Res. 37 (1):59–73. doi:10.1177/0734242X18812651.
  • Dyer, A., A.C. Miller, B. Chandra, J.G. Maza, C. Tran, J. Bates, V. Olivier, and A.R. Tuininga. 2021. The feasibility of renewable natural gas in New Jersey. Sustainability (Switzerland) 13 (4):1618. doi:10.3390/su13041618.
  • Ellen Macarthur Foundation. 2017. A new textiles economy: Redesigning fashion’s future.” Ellen Macarthur Foundation, [s.L.]. [Online]. Accessed May 2, 2023. https://www.ellenmacarthurfoundation.org/assets/downloads/publications/A-New-Textiles-Economy_Full-Report.pdf.
  • European Commission. 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. Official Journal of the European Union. Luxembourg. November, 22. [Online]. Accessed March 29, 2023. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0098.
  • Federal Ministry for Economic Affairs and Energy. 2010. German bioenergy roadmap. Berlin: BMWi.
  • Feiz, R., M. Johansson, E. Lindkvist, J. Moestedt, S.N. Paledal, and N. Svensson. 2020. Key performance indicators for biogas production—methodological insights on the life-cycle analysis of biogas production from source-separated food waste. Energy Elsevier 200. doi:10.1016/j.energy.2020.117462.
  • Gaida, D., C. Wolf, A. Meyer, J. Stuhlsatz, T. Lippel, M. Bäck, S. Bongards, and S. McLoone. 2012. State estimation for anaerobic digesters using the ADM1. Water Sci. Technol. 66 (5):1088–95. doi:10.2166/wst.2012.286.
  • Gandhi, P., K. Paritosh, N. Pareek, S. Mathur, J. Lisasoain, A. Gronauer, A. Bauer, and V. Vivekanand. 2018. Multicriteria decision model and thermal pretreatment of hotel food waste for robust output to biogas: Case study from city of Jaipur, India. Biomed. Res. Int. 2018:1–13. doi:10.1155/2018/9416249.
  • Gopikumar, S., S. Raja, Y.H. Robinson, V. Shanmuganathan, and S.A. Rho. 2021. A method of landfill leachate management using internet of things for sustainable smart city development. Sustain. Cities. Soc. 66. doi:10.1016/j.scs.2020.102521.
  • Gunaratne, T., S. Dahlgren, and L. Strandberg. 2016. Framework to benchmark sustainability of biomethane supply chains: Facilitating sustainability decision making in adopting biomethane as a public transportation fuel in Western Europe. Int. J. Green Energy 13 (8):759–66. doi:10.1080/15435075.2016.1175352.
  • Hagman, L., and R. Feiz. 2021. Advancing the circular economy through organic by-product valorization: A multi-criteria assessment of a wheat-based biorefinery. Waste Biomass Valorization 12 (11):6205–17. doi:10.1007/s12649-021-01440-y.
  • Horschig, T., A. Welfle, E. Billig, and D. Thran. 2019. From Paris agreement to business cases for upgraded biogas: Analysis of potential market uptake for biomethane plants in Germany using biogenic carbon capture and utilization technologies. Biomass Bioenerg. 120:313–23. doi:10.1016/j.biombioe.2018.11.022.
  • Huisingh, D. 2012. Call for comprehensive/integrative review articles. J. Cleaner Prod. 29–30:290.
  • IEA. 2022. Gas market report Q4 2022 including global gas security review 2022. [Online]. Accessed November 3, 2022. https://iea.blob.core.windows.net/assets/318af78e-37c8-425a-b09e-ff89816ffeca/GasMarketReportQ42022-CCBY4.0.pdf.
  • International Methane Emissions Observatory. 2023. An eye on methane: E — the road to radical transparency: International methane emissions observatory 2023. Nairobi.
  • Ioannou-Ttofa, L., S. Foteinis, A.S. Moustafa, E. Abdelsalam, M. Samer, and D. Fatta-Kassinos. 2021. Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer. J. Cleaner Prod. 286. doi:10.1016/j.jclepro.2020.125468.
  • IPEA. 2022. Resíduos sólidos urbanos no Brasil: desafios tecnológicos, políticos e econômicos. [Online]. Accessed November 3, 2022. https://www.ipea.gov.br/cts/pt/central-de-conteudo/artigos/artigos/217-residuos-solidos-urbanos-no-brasil-desafios-tecnologicos-politicos-e-economicos.
  • Kalinichenko, A., V. Havrysh, and V. Perebyynis. 2016. Evaluation of biogas production and usage potential. Ecol. Chem. Eng. 23 (3). doi: 10.1515/eces-2016-0027.
  • Kalinichenko, A., V. Havrysh, and V. Perebyynis. 2017. Sensitivity analysis in investment project of biogas plant. Appl. Ecol. Environ. Res. 15 (4):969–85. doi:10.15666/aeer/1504_969985.
  • Kaneesamkandi, Z., A.U. Rehman, Y.S. Usmani, and U. Umer. 2020. Methodology for assessment of alternative waste treatment strategies using entropy weights. Sustain.(Switzerland) 12 (16):6689. doi:10.3390/resources7010011.
  • Karlsson, T. 2014. Manual básico de biogás, 69. Lajeado: Ed. da Univates.
  • Kaza, S., L.C. Yao, P. Bhada-Tata, and F. Van Woerden. 2018. What a waste 2.0: A global snapshot of solid waste management to 2050. Urban Development. Washington, DC: World Bank.
  • Khawaja, C., R. Janssen, R. Mergner, D. Rutz, M. Colangeli, L. Traverso, M.M. Morese, M. Hirschmugl, C. Sobe, A. Calera, et al. 2021. Viability and sustainability assessment of bioenergy value chains on underutilised lands in the EU and Ukraine. Energies 14 (6):1566. doi:10.3390/en14061566.
  • Kluczek, A. 2018. Dynamic energy LCA-based assessment approach to evaluate energy intensity and related impact for the biogas CHP plant as the basis of the environmental view of sustainability. Procedia Manuf. 21:297–304. doi:10.1016/j.promfg.2018.02.124.
  • Konneh, K.V., H. Masrur, M.L. Othman, H. Takahashi, N. Krishna, and T. Senjyu. 2021. Multi-attribute decision-making approach for a cost-effective and sustainable energy system considering weight assignment analysis. Sustainability (Switzerland) 13 (10):5615. doi:10.3390/su13105615.
  • Laasasenaho, K., A. Lensu, R. Lauhanen, and J. Rintala. 2019. GIS-data related route optimization, hierarchical clustering, location optimization, and kernel density methods are useful for promoting distributed bioenergy plant planning in rural areas. Sustain. Energy Technol. Assess. 32:47–57. doi:10.1016/j.seta.2019.01.006.
  • Li, F., S. Cheng, H. Yu, and D. Yang. 2016. Waste from livestock and poultry breeding and its potential assessment of biogas energy in rural China. J. Cleaner Prod. 126:451–60. doi:10.1016/j.jclepro.2016.02.104.
  • Lindfors, A., R. Feiz, M. Eklund, and J. Ammenberg. 2019. Assessing the potential, performance and feasibility of urban solutions: Methodological considerations and learnings from biogas solutions. Sustainability (Switzerland) 11 (14). doi: 10.3390/su11143756.
  • Llano, T., E. Dosal, J. Lindorfer, and D.C. Finger. 2021. Application of multi-criteria decision-making tools for assessing biogas plants: A case study in Reykjavik, Iceland. Water 13 (16):2150. doi:10.3390/w13162150.
  • Meng, L., A. Alengebawy, P. Ai, K. Jin, M. Chen, and Y. Pan. 2020. Techno-economic assessment of three modes of large-scale crop residue utilization projects in china. Energies 13 (14):3729. doi:10.3390/en13143729.
  • Myšáková, D., I. Jáč, and M. Petrů. 2016. Investment opportunities for family bussinesses in the field of use of biogas plants. DSpace 19:19–32. doi:10.15240/tul/001/2016-4-002.
  • Obileke, K.C., S. Mamphweli, E.L. Meyer, G. Makaka, and N. Nwokolo. 2020. Design and Fabrication of a Plastic Biogas Digester for the Production of Biogas from Cow Dung. J. Eng. 2020:1–11. doi:10.1155/2020/1848714.
  • ODS Brasil. 2022. Objetivos Brasileiros do Desenvolvimento Sustentável. [Online]. Accessed October 28, 2022. https://odsbrasil.gov.br/.
  • O’Shea, R., R. Lin, D.M. Wall, J.D. Browne, and J.D. Murphy. 2021. Distillery decarbonisation and anaerobic digestion: Balancing benefits and drawbacks using a compromise programming approach. Biofuel Res. J. 8 (3):1417–32. doi:10.18331/BRJ2021.8.3.2.
  • Pehlken, A., K. Wulf, K. Grecksch, T. Klenke, and N. Tsydenova. 2020. More sustainable bioenergy by making use of regional alternative biomass? Sustainability (Switzerland) 12 (19):7849. doi:10.3390/su12197849.
  • Poggio, D., M. Walker, W. Nimmo, L. Ma, and M. Pourkashanian. 2016. Modelling the anaerobic digestion of solid organic waste–substrate characterisation method for ADM1 using a combined biochemical and kinetic parameter estimation approach. Waste Manage. (Oxf.) 53:40–54. doi:10.1016/j.wasman.2016.04.024.
  • Rahmam, M.M., J.V. Paatero, and R. Lahdelma. 2013. Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach. Energy. Policy 59:589–99. doi:10.1016/j.enpol.2013.04.017.
  • Rao, B., A. Mane, A.B. Rao, and V. Sardeshpande. 2014. Multi-criteria analysis of alternative biogas technologies. Energy Procedia 54:292–301. doi:10.1016/j.egypro.2014.07.272.
  • Roubík, H., J. Mazancová, P. Le-Dinh, D. Dinh-Van, and J. Banout. 2018. Biogas quality across small-scale biogas plants: A case of central Vietnam. Energies 11 (7). doi: 10.3390/en11071794.
  • Rupf, G.V., P.A. Bahri, K. De-Boer, and M.P. Mchenry. 2017. Development of an optimal biogas system design model for sub-saharan Africa with case studies from Kenya and Cameroon. Renewable Energy. doi:10.1016/j.renene.2017.03.048.
  • Sadhukhan, J. 2014. Distributed and micro-generation from biogas and agricultural application of sewage sludge: Comparative environmental performance analysis using life cycle approaches. Appl. Energy 122:196–206. doi:10.1016/j.apenergy.2014.01.051.
  • Safdie, S. 2023. Global food waste in 2023. Greenly Resource. [Online]. Accessed May 11, 2023. https://greenly.earth/en-us/blog/ecology-news/global-food-waste-in-2022.
  • Silva, S., L. Alçada-Almeida, and L.C. Dias. 2014. Biogas plants site selection integrating multicriteria decision aid methods and GIS techniques: A case study in a Portuguese region. Biomass Bioenerg. 71:58–68. doi:10.1016/j.biombioe.2014.10.025.
  • Smith, J.-U., A. Fischer, P.D. Hallett, H.Y. Homans, P. Smith, Y. Abdul-Salam, H.H. Emmerling, and E. Phimister. 2015. Sustainable use of organic resources for bioenergy, food and water provision in rural sub-saharan Africa. Renewable Sustain. Energy Rev. 50:903–17. doi:10.1016/j.rser.2015.04.071.
  • Soha, T., and B. Hartmann. 2022. Complex power-to-gas plant site selection by multi-criteria decision-making and GIS. Energy Convers. Manage. 13:13. doi:10.1016/j.ecmx.2021.100168.
  • Swedish Environmental Protection Agency. 2017. Biogas handbook: The Swedish biogas market. Stockholm: Naturvårdsverket.
  • Tonrangklang, P., A. Therdyothin, and I. Preechawuttipong. 2022. The financial feasibility of compressed biomethane gas application in Thailand. Energy. Sustain. Soc. 12 (1):1–12. doi:10.1186/s13705-022-00339-3.
  • Ugwu, S., and C. Enweremadu. 2021. Selection of iron-based additives for enhanced anaerobic digestion of sludge using the multicriteria decision-making approach. Environ. Clim. Technol. 25 (1):422–35. doi:10.2478/rtuect-2021-0031.
  • Verhoog, R.G., A. Dijkema, and G. PJ. 2016. Modelling socio-ecological systems with MAIA: A biogas infrastructure simulation. Environ. Model. Softw. 81:72–85. doi:10.1016/j.envsoft.2016.03.011.
  • Wagner, M., A. Mangold, J. Lask, E. Petig, A. Kiesel, and I. Lewandowski. 2019. Economic and environmental performance of miscanthus cultivated on marginal land for biogas production. GCB Bioenergy 11 (1):34–49. doi:10.1111/gcbb.12567.
  • World Health Organization. 2021. COP26 special report on climate change and health: The health argument for climate action. World Health Organization. [Online]. Accessed May 11, 2023. https://apps.who.int/iris/handle/10665/346168.
  • Yang, H., C. Li, M. Shahidehpour, C. Zhang, B. Zhou, Q. Wu, and L. Zhou. 2020. Multistage expansion planning of integrated biogas and electric power delivery system considering the regional availability of biomass. IEEE Trans. Sustain. Energy 12 (2):920–30. doi:10.1109/TSTE.2020.3025831.
  • Zhang, W., C. Wang, L. Zhang, Y. Xu, C. Yuanzheng, Z. Lu, and D.G. Streets. 2018. Evaluation of the performance of distributed and centralized biomass technologies in rural China. Renewable Energy 125:445–55. doi:10.1016/j.renene.2018.02.109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.