104
Views
0
CrossRef citations to date
0
Altmetric
TECHNICAL PAPERS

Fate and transport of viable Bacillus anthracis simulant spores in ambient air during a large outdoor decontamination field exercise

, , , , , , , , & show all
Pages 464-477 | Received 20 Feb 2024, Accepted 06 May 2024, Published online: 24 Jun 2024

References

  • Cooper, C.W., K.A. Aithinne, B.S. Stevenson, J.E. Black, and D.L. Johnson. 2020. Comparison and evaluation of a high volume air sampling system for the collection of Clostridioides difficile endospore aerosol in health care environments. Am. J. Infect. Control 48 (11):1354–60. doi:10.1016/j.ajic.2020.04.014.
  • Emanuel, P.A., P.E. Buckley, T.A. Sutton, J.M. Edmonds, A.M. Bailey, B.A. Rivers, M.H. Kim, W.J. Ginley, C.C. Keiser, and R.W. Doherty. 2012. Detection and tracking of a novel genetically tagged biological simulant in the environment. Appl. Environ. Microbiol. 78 (23):8281–88. doi:10.1128/AEM.02006-12.
  • Garza, A.G., S.M. Van Cuyk, M.J. Brown, and K.M. Omberg. 2014. Detection of the urban release of a bacillus anthracis simulant by air sampling. Biosecur. Bioterror. 12 (2):66–75. doi:10.1089/bsp.2013.0086.
  • Gibbons, H.S., S.M. Broomall, L.A. McNew, H. Daligault, C. Chapman, D. Bruce, M. Karavis, M. Krepps, P.A. McGregor, C. Hong, et al. 2011. Genomic signatures of strain selection and enhancement in Bacillus atrophaeus var. globigii, a historical biowarfare simulant. PLOS ONE 6 (3):e17836. doi:10.1371/journal.pone.0017836.
  • Harding, R.N., C.A. Hara, S.B. Hall, E.A. Vitalis, C.B. Thomas, A.D. Jones, J.A. Day, V.R. Tur-Rojas, T. Jorgensen, and E. Herchert. 2016. Unique DNA-barcoded aerosol test particles for studying aerosol transport. Aerosol Sci. Technol. 50 (5):429–35. doi:10.1080/02786826.2016.1162903
  • Hayes, C., M.W. Calfee, and T. Boe. 2023. Demonstration and evaluation of commercial and municipal equipment for urban biological decontamination. Remediation. (N. Y). 33 (3):249–61. doi:10.1002/rem.21751
  • Kim, J., J. Thornburg, A. Dart, E. Dowell, J. Archer, M.W. Calfee, A. Mikelonis, L. Mickelsen, and T. Boe. 2021. Environmental influences on the resuspension of Bacillus spores. EPA International Decontamination Research and Development Conference, Durham, NC.
  • Layshock, J.A., B. Pearson, K. Crockett, M.J. Brown, S. Van Cuyk, W.B. Daniel, and K.M. Omberg. 2012. Reaerosolization of Bacillus spp. In outdoor environments: A review of the experimental literature. Biosecur. Bioterror. 10 (3):299–303. doi:10.1089/bsp.2012.0026.
  • Lemieux, P., A. Touati, J. Sawyer, D. Aslett, S. Serre, B. Pourdeyhimi, P. Grondin, T. McArthur, A. Abdel-Hady, and M. Monge. 2024. Use of semi-permeable bag materials to facilitate on-site treatment of biological agent-contaminated waste. Waste Manage. (Oxford) 178:292–300. doi:10.1016/j.wasman.2024.02.006.
  • Middelkoop, K., A.S. Koch, Z. Hoosen, W. Bryden, C. Call, R. Seldon, D.F. Warner, R. Wood, and J.R. Andrews. 2023. Environmental air sampling for detection and quantification of mycobacterium tuberculosis in clinical settings: Proof of concept. Infect. Cont. Hosp. Ep. 44 (5):774–79. doi:10.1017/ice.2022.162.
  • Mikelonis, A.M., A. Abdel-Hady, D. Aslett, K. Ratliff, A. Touati, J. Archer, S. Serre, L. Mickelsen, S. Taft, and M. Calfee. 2020. Comparison of surface sampling methods for an extended duration outdoor biological contamination study. Environ. Monit. Assess. 192 (7):1–13. doi:10.1007/s10661-020-08434-8.
  • Mikelonis, A.M., M. Calfee, S.D. Lee, A. Touati, and K. Ratliff. 2021. Rainfall washoff of spores from concrete and asphalt surfaces. Water Resour. Res. 57 (3):e2020WR028533. doi:10.1029/2020WR028533.
  • Nelson, S., K. Hofacre, S. Shah, E. Silvestri, V. Gallardo, A. Mikelonis, R. James, and M.W. Calfee. 2022. Evaluation of sample processing methods to improve the detection of Bacillus anthracis in difficult sample matrices. Environ. Monit. Assess. 194 (11):789. doi:10.1007/s10661-022-10467-0.
  • Pacheco, J.M., B. Brito, E. Hartwig, G.R. Smoliga, A. Perez, J. Arzt, and L.L. Rodriguez. 2017. Early detection of foot‐and‐mouth disease virus from infected cattle using a dry filter air sampling system. Transbound. Emerg. Dis. 64 (2):564–73. doi:10.1111/tbed.12404.
  • Rose, L.J., L. Hodges, H. O’Connell, and J. Noble-Wang. 2011. National validation study of a cellulose sponge wipe-processing method for use after sampling bacillus anthracis spores from surfaces. Appl. Environ. Microb. 77 (23):8355–59. doi:10.1128/AEM.05377-11.
  • Silvestri, E.E., C. Yund, S. Taft, C.Y. Bowling, D. Chappie, K. Garrahan, E. Brady-Roberts, H. Stone, and T.L. Nichols. 2017. Considerations for estimating microbial environmental data concentrations collected from a field setting. J. Expo. Sci. Environ. Epidemiol. 27 (2):141–51. doi:10.1038/jes.2016.3.
  • Tufts, J.A., M.W. Calfee, S.D. Lee, and S.P. Ryan. 2014. Bacillus thuringiensis as a surrogate for Bacillus anthracis in aerosol research. World J. Microbiol. Biotechnol. 30 (5):1453–61. doi:10.1007/s11274-013-1576-x.
  • U.S. Centers for Disease Control and PreventionAntonio Vieira, K.H., R. Traxler, and C. Marston. 2024. Anthrax CDC yellow book 2024. Atlanta, GA: U.S. Centers for Disease Control and Prevention.
  • U.S. Environmental Protection Agency. 2014. Determination of the difference in reaerosolization of spores of outdoor materials. Report # EPA/600/R-14/259.
  • U.S. Environmental Protection Agency. 2017. Field application of emerging composite sampling methods. Report # EPA/600/R-17/212.
  • U.S. Environmental Protection Agency. 2023a. Analysis for Coastal Operational Resiliency (AnCOR) Wide Area Demonstration. Epa/600/R-23/149.
  • U.S. Environmental Protection Agency. 2023b. Analysis for Coastal Operational Resiliency webpage. Accessed August 17, 2023. https://www.epa.gov/emergency-response-research/analysis-coastal-operational-resiliency .
  • Van Cuyk, S., L.A.B. Veal, B. Simpson, and K.M. Omberg. 2011. Transport of Bacillus thuringiensis var. kurstaki via fomites. Biosecur. Bioterror. 9 (3):288–300. doi:10.1089/bsp.2010.0073.
  • Wood, J., and A. Adrion. 2019. Review of decontamination techniques for the Inactivation of Bacillus anthracis and other spore-forming bacteria associated with building or outdoor materials. Environ. Sci. Technol. 53 (8):4045–62. doi:10.1021/acs.est.8b05274.
  • Wood, J., Y.W. Choi, J.V. Rogers, T.J. Kelly, K.B. Riggs, and Z.J. Willenberg. 2011. Efficacy of liquid spray decontaminants for inactivation of bacillus anthracis spores on building and outdoor materials. J. Appl. Microbiol. 110 (5):1262–73. doi:10.1111/j.1365-2672.2011.04980.x.
  • Wood, J., K.M. Meyer, T.J. Kelly, Y.W. Choi, J.V. Rogers, K.B. Riggs, Z.J. Willenberg, and A. Driks. 2015. Environmental persistence of bacillus anthracis and Bacillus subtilis spores. PLOS ONE 10 (9):e0138083. doi:10.1371/journal.pone.0138083.
  • Wood, J., A. Touati, A. Abdel-Hady, D. Aslett, F. Delafield, W. Calfee, E. Silvestri, S. Serre, L. Mickelsen, C. Tomlinson, et al. 2021. Decontamination of soil contaminated at the surface with Bacillus anthracis spores using dry thermal treatment. J. Environ. Manage. 280:280. doi:10.1016/j.jenvman.2020.111684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.