1,303
Views
0
CrossRef citations to date
0
Altmetric
Genetics and Molecular Biology

Phosphorylation of the Myogenic Factor Myocyte Enhancer Factor-2 Impacts Myogenesis In Vivo

, , , , &
Pages 241-253 | Received 02 Jun 2022, Accepted 15 Mar 2023, Published online: 15 May 2023

REFERENCES

  • Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development. 2007;134:4131–4140. doi:10.1242/dev.008367.
  • Andres V, Cervera M, Mahdavi V. Determination of the consensus binding site for MEF2 expressed in muscle and brain reveals tissue-specific sequence constraints. J Biol Chem. 1995;270:23246–23249. doi:10.1074/jbc.270.40.23246.
  • Gossett LA, Kelvin DJ, Sternberg EA, Olson EN. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol Cell Biol. 1989;9:5022–5033. doi:10.1128/mcb.9.11.5022-5033.1989.
  • Kelly KK, Meadows SM, Cripps RM. Drosophila Mef2 is an essential regulator of Actin57B transcription in cardiac, skeletal and visceral muscle lineages. Mech Dev. 2002;110:39–50. doi:10.1016/s0925-4773(01)00586-x.
  • Lin MH, Nguyen HT, Dybala C, Storti RV. Myocyte-specific enhancer factor 2 acts cooperatively with a muscle activator region to regulate Drosophila tropomyosin gene muscle expression. Proc Natl Acad Sci U S A. 1996;93:4623–4628. doi:10.1073/pnas.93.10.4623.
  • Sandmann T, Jensen LJ, Jakobsen JS, Karzynski MM, Eichenlaub MP, Bork P, Furlong EE. A temporal map of transcription factor activity: mef2 directly regulates target genes at all stages of muscle development. Dev Cell. 2006;10:797–807. doi:10.1016/j.devcel.2006.04.009.
  • Lin Q, Schwarz J, Bucana C, Olson EN. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science. 1997;276:1404–1407. doi:10.1126/science.276.5317.1404.
  • Potthoff MJ, Arnold MA, McAnally J, Richardson JA, Bassel-Duby R, Olson EN. Regulation of skeletal muscle sarcomeric integrity and postnatal muscle function by MEF2C. Mol Cell Biol. 2007;27:8143–8151. doi:10.1128/MCB.01187-07.
  • Naya FJ, Black BL, Wu H, Bassel-Duby R, Richardson JA, Hill JA, Olson EN. Mitochondrial deficiency and cardiac sudden death in mice lacking the MEF2A transcription factor. Nat Med. 2002;8:1303–1309. doi:10.1038/nm789.
  • Hinits Y, Hughes SM. Mef2s are required for think filament formation in nascent muscle fibers. Development. 2007;134:2511–2519. doi:10.1242/dev.007088.
  • Bour BA, O’Brien MA, Lockwood WL, Goldstein ES, Bodmer R, Taghert PH, Abmayr SM, Nguyen HT. Drosophila MEF2, a transcription factor that is essential for myogenesis. Genes Dev. 1995;9:730–741. doi:10.1101/gad.9.6.730.
  • Bryantsev AL, Baker PW, Lovato TL, Jaramillo MS, Cripps RM. Differential requirements for Myocyte enhancer factor-2 during adult myogenesis in Drosophila. Dev Biol. 2012;361:191–207. doi:10.1016/j.ydbio.2011.09.031.
  • Lilly B, Zhao B, Ranganayakulu G, Paterson BM, Schulz RA, Olson EN. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science. 1995;267:688–693. doi:10.1126/science.7839146.
  • Soler C, Han J, Taylor MV. The conserved transcription factors Mef2 has multiple roles in adult Drosophila musculature formation. Development. 2012;139:1270–1275. doi:10.1242/dev.077875.
  • Black BL, Cripps RM. 2010 Myocyte enhancer factor-2 transcription factors in heart development and disease. In: Harvey RP and Rosenthal N, editors. Heart development and disease. New York: Academic Press.
  • Taylor MV. A novel Drosophila, mef2-regulated muscle gene isolated in a subtractive hybridisation-based molecular screen using small amounts of zygotic mutant RNA. Dev Biol. 2000;220:37–52. doi:10.1006/dbio.2000.9608.
  • Ranganayakulu G, Zhao B, Dokidis A, Molkentin JD, Olson EN, Schulz RA. A series of mutations in the D-MEF2 transcription factor reveal multiple functions in larval and adult myogenesis in Drosophila. Dev Biol. 1995;171:169–181. doi:10.1006/dbio.1995.1269.
  • Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, Spohr G, Kouzarides T, Mohun TJ. MEF-2 function is modified by a novel co-repressor, MITR. embo J. 1999;18:5085–5098. doi:10.1093/emboj/18.18.5085.
  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T. HDAC4 deacetylase associates with and represses the MEF2 transcription factor. embo J. 1999;18:5099–5107. doi:10.1093/emboj/18.18.5099.
  • Lu J, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci U S A. 2000a;97:4070–4075. doi:10.1073/pnas.080064097.
  • Lu J, McKinsey TA, Zhang CL, Olson EN. Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell. 2000b;6:233–244. doi:10.1016/s1097-2765(00)00025-3.
  • Lemercier C, Verdel A, Galloo B, Curtet S, Brocard M-P, Khochbin S. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcription factor. J Biol Chem. 2000;275:15594–15599. doi:10.1074/jbc.M908437199.
  • Molkentin JD, Li L, Olson EN. Phosphorylation of the MADS-box transcription factor MEF2C enhances its DNA binding ability. J Biol Chem. 1996;271:17199–17204. doi:10.1074/jbc.271.29.17199.
  • Han J, Jiang Y, Li Z, Kravchenko VV, Ulevitch RJ. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature. 1997;386:296–299. doi:10.1038/386296a0.
  • Cox DM, Du M, Marback M, Yang ECC, Chan J, Siu KWM, McDermott JC. Phosphorylation motifs regulating the stability and function of Myocyte enhancer factor 2A. J Biol Chem. 2003;278:15927–15303.
  • Yang S-H, Galanis A, Sharrocks AD. Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors. Mol Cell Biol. 1999;19:4028–4038. doi:10.1128/MCB.19.6.4028.
  • Badodi S, Baruffaldi F, Ganassi M, Battini R, Molinari S. Phosphorylation-dependent degradation of MEF2C contributes to regulate G2/M transition. Cell Cycle. 2015;14:1517–1528. doi:10.1080/15384101.2015.1026519.
  • Di Giorgio E, Gagliostro E, Clocchiatti A, Brancolini C. The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase. Mol Cell Biol. 2015;35:1633–1647. doi:10.1128/MCB.01461-14.
  • Kyriakakis P, Tipping M, Abed L, Veraksa A. Tandem affinity purification in Drosophila. Fly. 2008;2:229–235. doi:10.4161/fly.6669.
  • Brand AH, Perrimon N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development. 1993;118:401–415. doi:10.1242/dev.118.2.401.
  • Zaffran S, Astier M, Gratecos D, Semeriva M. The held out wings (how) Drosophila gene encodes a putative RNA-binding protein involved in the control of muscular and cardiac activity. Development. 1997;124:2087–2098. doi:10.1242/dev.124.10.2087.
  • Lovato TL, Benjamin AR, Cripps RM. Transcription of Myocyte enhancer factor-2 in adult Drosophila myoblasts is induced by the steroid hormone ecdysone. Dev Biol. 2005;288:612–621. doi:10.1016/j.ydbio.2005.09.007.
  • Peckham M, Molloy JE, Sparrow JC, White DCS. Physiological properties of the dorsal longitudinal flight muscle and the tergal depressor of the trochanter muscle of Drosophila melanogaster. J Muscle Res Cell Motil. 1990;11:203–215. doi:10.1007/BF01843574.
  • Baker PW, Kelly Tanaka KK, Klitgord N, Cripps RM. Adult myogenesis in Drosophila melanogaster can proceed independently of Myocyte enhancer factor-2. Genetics. 2005;170:1747–1759. doi:10.1534/genetics.105.041749.
  • Lovato TL, Adams MM, Baker PW, Cripps RM. A molecular mechanism of temperature sensitivity for mutations affecting the Drosophila muscle regulator Myocyte enhancer factor 2. Genetics. 2009;183:107–117. doi:10.1534/genetics.109.105056.
  • Kocherlakota KS, Wu J-m, McDermott J, Abmayr SM. Analysis of the cell adhesion molecule Sticks-and-stones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated Tyrosines that direct myoblast fusion in Drosophila melanogaster. Genetics. 2008;178:1371–1383. doi:10.1534/genetics.107.083808.
  • Clark RI, Tan SWS, Pean CB, Roostalu U, Vivancos V, Bronda K, Pilatova M, Fu J, Walker DW, Berdeaux R, et al. MEF2 is an in vivo immune-metabolic switch. Cell. 2013;155:435–447. doi:10.1016/j.cell.2013.09.007.
  • Elgar SJ, Han J, Taylor MV. Mef2 activity levels differentially affect gene expression during Drosophila muscle development. Proc Natl Acad Sci U S A. 2008;105:918–923. doi:10.1073/pnas.0711255105.
  • Baruffaldi F, Montarras D, Basile V, De Feo L, Badodi S, Ganassi M, Battini R, Nicoletti C, Imbriano C, Musaro A, et al. Dynamic phosphorylation of the Myocyte enhancer factor 2Calpha1 splice variant promotes skeletal muscle regeneration and hypertrophy. Stem Cells. 2017;35:725–738. doi:10.1002/stem.2495.
  • Zhang CL, McKinsey TA, Olson EN. The transcriptional co-repressor MITR is a signal responsive inhibitor of myogenesis. Proc Natl Acad Sci U S A. 2001;98:7354–7359. doi:10.1073/pnas.131198498.
  • Sun L, Youn HD, Loh C, Stolow M, He W, Liu JO. Cabin 1, a negative regulator for calcieurin signaling in T-lymphocytes. Immunity. 1998;8:703–711. doi:10.1016/s1074-7613(00)80575-0.
  • Molkentin JD, Black BL, Martin JF, Olson EN. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell. 1995;83:1125–1136. doi:10.1016/0092-8674(95)90139-6.
  • Kelly Tanaka KK, Bryantsev AL, Cripps RM. Myocyte enhancer factor-2 and Chorion factor-2 collaborate in activation of the myogenic program in Drosophila. Mol Cell Biol. 2008;28:1616–1629. doi:10.1128/MCB.01169-07.
  • Rubin GM, Spradling AC. Genetic transformation of Drosophila with transposable element vectors. Science. 1982;218:348–353. doi:10.1126/science.6289436.
  • Kane NS, Vora M, Varre KJ, Padgett RW. Efficient Screening of CRISPR/Cas9-Induced Events in Drosophila Using a Co-CRISPR Strategy. G3 GenesGenomesGenetics. 2017;7:87–93. doi:10.1534/g3.116.036723.
  • Vishal K, Lovato TL, Bragg C, Chechenova MB, Cripps RM. FGF signaling promotes myoblast proliferation through activation of Wingless signaling. Dev Biol. 2020;464:1–10. doi:10.1016/j.ydbio.2020.05.009.
  • Morriss GR, Bryantsev AL, Chechenova M, LaBeau EM, Lovato TL, Ryan KM and Cripps RM. Analysis of skeletal muscle development in Drosophila. In: DiMario J, editors. Myogenesis: methods and protocols. New York: Springer; 2011.
  • Drummond DR, Hennessey ES, Sparrow JC. Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet. 1991;226:70–80. doi:10.1007/BF00273589.