349
Views
0
CrossRef citations to date
0
Altmetric
Eukaryotic Cells

Distinct Interaction Modes for the Eukaryotic RNA Polymerase Alpha-like Subunits

, , , & ORCID Icon
Pages 269-282 | Received 31 Jan 2023, Accepted 12 Apr 2023, Published online: 24 May 2023

REFERENCES

  • Werner F, Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol. 2011;9:85–98. doi:10.1038/nrmicro2507.
  • Wild T, Cramer P. Biogenesis of multisubunit RNA polymerases. Trends Biochem Sci. 2012;37:99–105. doi:10.1016/j.tibs.2011.12.001.
  • Ishihama A. Subunit of assembly of Escherichia coli RNA polymerase. Adv Biophys. 1981;14:1–35.
  • Kimura M, Ishihama A. Subunit assembly in vivo of Escherichia coli RNA polymerase: role of the amino-terminal assembly domain of alpha subunit. Genes Cells. 1996;1:517–528. doi:10.1046/j.1365-2443.1996.d01-258.x.
  • Lalo D, Carles C, Sentenac A, Thuriaux P. Interactions between three common subunits of yeast RNA polymerases I and III. Proc Natl Acad Sci U S A. 1993;90:5524–5528. doi:10.1073/pnas.90.12.5524.
  • Martindale DW. A conjugation-specific gene (cnjC) from Tetrahymena encodes a protein homologous to yeast RNA polymerase subunits (RPB3, RPC40) and similar to a portion of the prokaryotic RNA polymerase alpha subunit (rpoA). Nucleic Acids Res. 1990;18:2953–2960. doi:10.1093/nar/18.10.2953.
  • Eloranta JJ, Kato A, Teng MS, Weinzierl RO. In vitro assembly of an archaeal D-L-N RNA polymerase subunit complex reveals a eukaryote-like structural arrangement. Nucleic Acids Res. 1998;26:5562–5567. doi:10.1093/nar/26.24.5562.
  • Mann C, Buhler JM, Treich I, Sentenac A. RPC40, a unique gene for a subunit shared between yeast RNA polymerases A and C. Cell. 1987;48:627–637. doi:10.1016/0092-8674(87)90241-8.
  • Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell. 2012;45:439–446. doi:10.1016/j.molcel.2012.01.023.
  • Azuma Y, Yamagishi M, Ishihama A. Subunits of the Schizosaccharomyces pombe RNA polymerase II: enzyme purification and structure of the subunit 3 gene. Nucleic Acids Res. 1993;21:3749–3754. doi:10.1093/nar/21.16.3749.
  • Bruno T, Corbi N, Di Padova M, De Angelis R, Floridi A, Passananti C, Fanciulli M. The RNA polymerase II core subunit 11 interacts with keratin 19, a component of the intermediate filament proteins. FEBS Lett. 1999;453:273–277. doi:10.1016/s0014-5793(99)00733-4.
  • Kimura M, Ishiguro A, Ishihama A. RNA polymerase II subunits 2, 3, and 11 form a core subassembly with DNA binding activity. J Biol Chem. 1997;272:25851–25855. doi:10.1074/jbc.272.41.25851.
  • Cieśla M, Makała E, Płonka M, Bazan R, Gewartowski K, Dziembowski A, Boguta M. Rbs1, a new protein implicated in RNA polymerase III biogenesis in yeast Saccharomyces cerevisiae. Mol Cell Biol. 2015;35:1169–1181. doi:10.1128/MCB.01230-14.
  • Engel C, Plitzko J, Cramer P. RNA polymerase I-Rrn3 complex at 4.8 A resolution. Nat Commun. 2016;7:12129. doi:10.1038/ncomms12129.
  • Dauwerse JG, Dixon J, Seland S, Ruivenkamp CAL, van Haeringen A, Hoefsloot LH, Peters DJM, Boers AC-d, Daumer-Haas C, Maiwald R, et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat Genet. 2011;43:20–22. doi:10.1038/ng.724.
  • Ghesh L, Vincent M, Delemazure AS, Boyer J, Corre P, Perez F, Genevieve D, Laplanche JL, Collet C, Isidor B. Autosomal recessive Treacher Collins syndrome due to POLR1C mutations: Report of a new family and review of the literature. Am J Med Genet A. 2019;179:1390–1394. doi:10.1002/ajmg.a.61147.
  • Giampietro PF, Armstrong L, Stoddard A, Blank RD, Livingston J, Raggio CL, Rasmussen K, Pickart M, Lorier R, Turner A, et al. Whole exome sequencing identifies a POLRID mutation segregating in a father and two daughters with findings of Klippel-Feil and Treacher Collins syndromes. Am J Med Genet A. 2015;167A:95–102. doi:10.1002/ajmg.a.36799.
  • Kolsi N, Boudaya F, Ben Thabet A, Charfi M, Regaieg C, Bouraoui A, Regaieg R, Hentati N, Hamed AB, Gargouri A. Treacher Collins syndrome: a case report and review of literature. Clin Case Rep. 2022;10:e6782.
  • Lu M, Yang B, Chen Z, Jiang H, Pan B. Phenotype analysis and genetic study of Chinese patients with Treacher Collins syndrome. Cleft Palate Craniofac J. 2022;59:1038–1047. doi:10.1177/10556656211037509.
  • Schaefer E, Collet C, Genevieve D, Vincent M, Lohmann DR, Sanchez E, Bolender C, Eliot MM, Nurnberg G, Passos-Bueno MR, et al. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome. Genet Med. 2014;16:720–724. doi:10.1038/gim.2014.12.
  • Trainor PA, Andrews BT. Facial dysostoses: etiology, pathogenesis and management. Am J Med Genet C Semin Med Genet. 2013;163C:283–294. doi:10.1002/ajmg.c.31375.
  • Ulhaq ZS, Nurputra DK, Soraya GV, Kurniawati S, Istifiani LA, Pamungkas SA, Tse WKF. A systematic review on Treacher Collins syndrome: correlation between molecular genetic findings and clinical severity. Clin Genet. 2023;103:146–155. doi:10.1111/cge.14243.
  • Lau MC, Kwong EM, Lai KP, Li JW, Ho JC, Chan TF, Wong CK, Jiang YJ, Tse WK. Pathogenesis of POLR1C-dependent Type 3 Treacher Collins Syndrome revealed by a zebrafish model. Biochim Biophys Acta. 2016;1862:1147–1158. doi:10.1016/j.bbadis.2016.03.005.
  • Noack Watt KE, Achilleos A, Neben CL, Merrill AE, Trainor PA. The roles of RNA polymerase I and III subunits Polr1c and Polr1d in craniofacial development and in zebrafish models of Treacher Collins syndrome. PLoS Genet. 2016;12:e1006187. doi:10.1371/journal.pgen.1006187.
  • Ross AP, Zarbalis KS. The emerging roles of ribosome biogenesis in craniofacial development. Front Physiol. 2014;5:26. doi:10.3389/fphys.2014.00026.
  • Terrazas K, Dixon J, Trainor PA, Dixon MJ. Rare syndromes of the head and face: mandibulofacial and acrofacial dysostoses. Wiley Interdiscip Rev Dev Biol. 2017;6:10.1002/wdev.263.
  • Trainor PA. Craniofacial birth defects: the role of neural crest cells in the etiology and pathogenesis of Treacher Collins syndrome and the potential for prevention. Am J Med Genet A. 2010;152A:2984–2994. doi:10.1002/ajmg.a.33454.
  • Ashrafi MR, Amanat M, Garshasbi M, Kameli R, Nilipour Y, Heidari M, Rezaei Z, Tavasoli AR. An update on clinical, pathological, diagnostic, and therapeutic perspectives of childhood leukodystrophies. Expert Rev Neurother. 2020;20:65–84. doi:10.1080/14737175.2020.1699060.
  • Bernard G, Vanderver A. 1993. POLR3-related leukodystrophy. In: Adam MP, Everman DB, Mirzaa GM, editors. GeneReviews((R)). Seattle (WA): University of Washington, Seattle.
  • Gauquelin L, Cayami FK, Sztriha L, Yoon G, Tran LT, Guerrero K, Hocke F, van Spaendonk RML, Fung EL, D'Arrigo S, et al. Clinical spectrum of POLR3-related leukodystrophy caused by biallelic POLR1C pathogenic variants. Neurol Genet. 2019;5:e369. doi:10.1212/NXG.0000000000000369.
  • Kraoua I, Karkar A, Drissi C, Benrhouma H, Klaa H, Samaan S, Renaldo F, Elmaleh M, Ben Hamouda M, Abdelhak S, et al. Novel POLR1C mutation in RNA polymerase III-related leukodystrophy with severe myoclonus and dystonia. Mol Genet Genomic Med. 2019;7:e914. doi:10.1002/mgg3.914.
  • Potic A, Brais B, Choquet K, Schiffmann R, Bernard G. 4H syndrome with late-onset growth hormone deficiency caused by POLR3A mutations. Arch Neurol. 2012;69:920–923. doi:10.1001/archneurol.2011.1963.
  • Han JY, Kim SY, Cheon JE, Choi M, Lee JS, Chae JH. A familial case of childhood ataxia with leukodystrophy due to novel POLR1C mutations. J Clin Neurol. 2020;16:338–340. doi:10.3988/jcn.2020.16.2.338.
  • Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA polymerase III subunit mutations in genetic diseases. Front Mol Biosci. 2021;8:696438. doi:10.3389/fmolb.2021.696438.
  • Naseer MI, Abdulkareem AA, Pushparaj PN, Saharti S, Muthaffar OY. Next-generation sequencing reveals novel homozygous missense variant c.934T > C in POLR1C gene causing leukodystrophy and hypomyelinating disease. Front Pediatr. 2022;10:862722. doi:10.3389/fped.2022.862722.
  • Yadav N, Saini J, Nagappa M. Novel mutation in the POLR1C gene causing hypomyelinating leukodystrophy in an adult. Neurol Clin Pract. 2021;11:e367–e369. doi:10.1212/CPJ.0000000000001002.
  • Coulombe B, Derksen A, La Piana R, Brais B, Gauthier MS, Bernard G. POLR3-related leukodystrophy: How do mutations affecting RNA polymerase III subunits cause hypomyelination? Fac Rev. 2021;10:12. doi:10.12703/r/10-12.
  • Kashiki H, Li H, Miyamoto S, Ueno H, Tsurusaki Y, Ikeda C, Kurata H, Okada T, Shimazu T, Imamura H, et al. POLR1C variants dysregulate splicing and cause hypomyelinating leukodystrophy. Neurol Genet. 2020;6:e524. doi:10.1212/NXG.0000000000000524.
  • Pelletier F, Perrier S, Cayami FK, Mirchi A, Saikali S, Tran LT, Ulrick N, Guerrero K, Rampakakis E, van Spaendonk RML, et al. Endocrine and growth abnormalities in 4H leukodystrophy caused by variants in POLR3A, POLR3B, and POLR1C. J Clin Endocrinol Metab. 2021;106:e660–e674. doi:10.1210/clinem/dgaa700.
  • Thiffault I, Wolf NI, Forget D, Guerrero K, Tran LT, Choquet K, Lavallee-Adam M, Poitras C, Brais B, Yoon G, et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat Commun. 2015;6:7623. doi:10.1038/ncomms8623.
  • Bitarafan F, Razmara E, Jafarinia E, Almadani N, Garshasbi M. A biallelic variant in POLR2C is associated with congenital hearing loss and male infertility: case report. Eur J Clin Invest. 2022;53:e13946.
  • Moriwaki M, Moore B, Mosbruger T, Neklason DW, Yandell M, Jorde LB, Welt CK. POLR2C mutations are associated with primary ovarian insufficiency in women. J Endocr Soc. 2017;1:162–173. doi:10.1210/js.2016-1014.
  • Walker-Kopp N, Jackobel AJ, Pannafino GN, Morocho PA, Xu X, Knutson BA. Treacher Collins syndrome mutations in Saccharomyces cerevisiae destabilize RNA polymerase I and III complex integrity. Hum Mol Genet. 2017;26:4290–4300. doi:10.1093/hmg/ddx317.
  • Moir RD, Lavados C, Lee J, Willis IM. Functional characterization of Polr3a hypomyelinating leukodystrophy mutations in the S. cerevisiae homolog, RPC160. Gene. 2021;768:145259. doi:10.1016/j.gene.2020.145259.
  • Choquet K, Yang S, Moir RD, Forget D, Lariviere R, Bouchard A, Poitras C, Sgarioto N, Dicaire MJ, Noohi F, et al. Absence of neurological abnormalities in mice homozygous for the Polr3a G672E hypomyelinating leukodystrophy mutation. Mol Brain. 2017;10:13. doi:10.1186/s13041-017-0294-y.
  • Benga WJ, Grandemange S, Shpakovski GV, Shematorova EK, Kedinger C, Vigneron M. Distinct regions of RPB11 are required for heterodimerization with RPB3 in human and yeast RNA polymerase II. Nucleic Acids Res. 2005;33:3582–3590. doi:10.1093/nar/gki672.
  • Zimmermann L, Stephens A, Nam SZ, Rau D, Kubler J, Lozajic M, Gabler F, Soding J, Lupas AN, Alva V. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430:2237–2243. doi:10.1016/j.jmb.2017.12.007.
  • Armache KJ, Mitterweger S, Meinhart A, Cramer P. Structures of complete RNA polymerase II and its subcomplex, Rpb4/7. J Biol Chem. 2005;280:7131–7134. doi:10.1074/jbc.M413038200.
  • Fernandez-Tornero C, Moreno-Morcillo M, Rashid UJ, Taylor NM, Ruiz FM, Gruene T, Legrand P, Steuerwald U, Muller CW. Crystal structure of the 14-subunit RNA polymerase I. Nature. 2013;502:644–649. doi:10.1038/nature12636.
  • He Y, Yan C, Fang J, Inouye C, Tjian R, Ivanov I, Nogales E. Near-atomic resolution visualization of human transcription promoter opening. Nature. 2016;533:359–365. doi:10.1038/nature17970.
  • Misiaszek AD, Girbig M, Grotsch H, Baudin F, Murciano B, Lafita A, Muller CW. Cryo-EM structures of human RNA polymerase I. Nat Struct Mol Biol. 2021;28:997–1008. doi:10.1038/s41594-021-00693-4.
  • Boeke JD, Trueheart J, Natsoulis G, Fink GR. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 1987;154:164–175.
  • Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 1999;15:1541–1553. doi:10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K.
  • Engel C, Sainsbury S, Cheung AC, Kostrewa D, Cramer P. RNA polymerase I structure and transcription regulation. Nature. 2013;502:650–655. doi:10.1038/nature12712.
  • Sanchez-Garcia R, Sorzano COS, Carazo JM, Segura J. BIPSPI: a method for the prediction of partner-specific protein-protein interfaces. Bioinformatics. 2019;35:470–477. doi:10.1093/bioinformatics/bty647.
  • Vincent M, Genevieve D, Ostertag A, Marlin S, Lacombe D, Martin-Coignard D, Coubes C, David A, Lyonnet S, Vilain C, et al. Treacher Collins syndrome: a clinical and molecular study based on a large series of patients. Genet Med. 2016;18:49–56. doi:10.1038/gim.2015.29.
  • Palumbo RJ, Belkevich AE, Pascual HG, Knutson BA. A clinically-relevant residue of POLR1D is required for Drosophila development. Dev Dyn. 2022;251:1780–1797. doi:10.1002/dvdy.505.
  • Wai HH, Vu L, Oakes M, Nomura M. Complete deletion of yeast chromosomal rDNA repeats and integration of a new rDNA repeat: use of rDNA deletion strains for functional analysis of rDNA promoter elements in vivo. Nucleic Acids Res. 2000;28:3524–3534. doi:10.1093/nar/28.18.3524.
  • Han Y, Yan C, Fishbain S, Ivanov I, He Y. Structural visualization of RNA polymerase III transcription machineries. Cell Discov. 2018;4:40. doi:10.1038/s41421-018-0044-z.
  • Gao M, Zhou H, Skolnick J. Insights into disease-associated mutations in the human proteome through protein structural analysis. Structure. 2015;23:1362–1369. doi:10.1016/j.str.2015.03.028.
  • Kannan N, Chander P, Ghosh P, Vishveshwara S, Chatterji D. Stabilizing interactions in the dimer interface of alpha-subunit in Escherichia coli RNA polymerase: a graph spectral and point mutation study. Protein Sci. 2001;10:46–54. doi:10.1110/ps.26201.
  • Livesey BJ, Marsh JA. The properties of human disease mutations at protein interfaces. PLoS Comput Biol. 2022;18:e1009858. doi:10.1371/journal.pcbi.1009858.
  • Redler RL, Das J, Diaz JR, Dokholyan NV. Protein destabilization as a common factor in diverse inherited disorders. J Mol Evol. 2016;82:11–16. doi:10.1007/s00239-015-9717-5.
  • Laurent JM, Young JH, Kachroo AH, Marcotte EM. Efforts to make and apply humanized yeast. Brief Funct Genomics. 2016;15:155–163. doi:10.1093/bfgp/elv041.
  • Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM. Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science. 2015;348:921–925. doi:10.1126/science.aaa0769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.