542
Views
0
CrossRef citations to date
0
Altmetric
Molecular and Cellular Biology

Fission Yeast TORC1 Promotes Cell Proliferation through Sfp1, a Transcription Factor Involved in Ribosome Biogenesis

, ORCID Icon, , , , ORCID Icon, , ORCID Icon, & ORCID Icon show all
Pages 675-692 | Received 28 Nov 2022, Accepted 06 Nov 2023, Published online: 05 Dec 2023

REFERENCES

  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124:471–484. doi:10.1016/j.cell.2006.01.016.
  • Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011;189:1177–1201. doi:10.1534/genetics.111.133363.
  • Yang H, Jiang X, Li B, Yang HJ, Miller M, Yang A, Dhar A, Pavletich NP. Mechanisms of mTORC1 activation by RHEB and inhibition by PRAS40. Nature. 2017;552:368–373. doi:10.1038/nature25023.
  • Inoki K, Li Y, Xu T, Guan K-L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev. 2003;17:1829–1834. doi:10.1101/gad.1110003.
  • Inoki K, Li Y, Zhu T, Wu J, Guan K-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4:648–657. doi:10.1038/ncb839.
  • Bar-Peled L, Schweitzer LD, Zoncu R, Sabatini DM. Ragulator is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell. 2012;150:1196–1208. doi:10.1016/j.cell.2012.07.032.
  • Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell. 2010;141:290–303. doi:10.1016/j.cell.2010.02.024.
  • Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, Sabatini DM. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science. 2008;320:1496–1501. doi:10.1126/science.1157535.
  • Bar-Peled L, Chantranupong L, Cherniack AD, Chen WW, Ottina KA, Grabiner BC, Spear ED, Carter SL, Meyerson M, Sabatini DM. A Tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science. 2013;340:1100–1106. doi:10.1126/science.1232044.
  • Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol. 2017;45:72–82. doi:10.1016/j.ceb.2017.02.012.
  • Ma XM, Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol. 2009;10:307–318. doi:10.1038/nrm2672.
  • Peterson TR, Sengupta SS, Harris TE, Carmack AE, Kang SA, Balderas E, Guertin DA, Madden KL, Carpenter AE, Finck BN, et al. mTOR Complex 1 regulates Lipin 1 localization to control the SREBP pathway. Cell. 2011;146:408–420. doi:10.1016/j.cell.2011.06.034.
  • Ganley IG, Lam DH, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem. 2009;284:12297–12305. doi:10.1074/jbc.M900573200.
  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009;20:1981–1991. doi:10.1091/mbc.e08-12-1248.
  • Kim LC, Cook RS, Chen J. MTORC1 and mTORC2 in cancer and the tumor microenvironment. Oncogene. 2017;36:2191–2201. doi:10.1038/onc.2016.363.
  • Fukuda T, Shiozaki K. The Rag GTPase-Ragulator complex attenuates TOR complex 1 signaling in fission yeast. Autophagy. 2018;14:1105–1106. doi:10.1080/15548627.2018.1444313.
  • Fukuda T, Shiozaki K. Multiplexed suppression of TOR complex 1 induces autophagy during starvation. Autophagy. 2021;17:1794–1795. doi:10.1080/15548627.2021.1938915.
  • Hayashi T, Hatanaka M, Nagao K, Nakaseko Y, Kanoh J, Kokubu A, Ebe M, Yanagida M. Rapamycin sensitivity of the Schizosaccharomyces pombe tor2 mutant and organization of two highly phosphorylated TOR complexes by specific and common subunits. Genes Cells. 2007;12:1357–1370. doi:10.1111/j.1365-2443.2007.01141.x.
  • Matsuo T, Otsubo Y, Urano J, Tamanoi F, Yamamoto M. Loss of the TOR kinase Tor2 mimics nitrogen starvation and activates the sexual development pathway in fission yeast. Mol Cell Biol. 2007;27:3154–3164. doi:10.1128/MCB.01039-06.
  • Otsubo Y, Nakashima A, Yamamoto M, Yamashita A. TORC1-dependent phosphorylation targets in fission yeast. Biomolecules. 2017;7:50. doi:10.3390/biom7030050.
  • Álvarez B, Moreno S. Fission yeast Tor2 promotes cell growth and represses cell differentiation. J Cell Sci. 2006;119:4475–4485. doi:10.1242/jcs.03241.
  • Uritani M, Hidaka H, Hotta Y, Ueno M, Ushimaru T, Toda T. Fission yeast Tor2 links nitrogen signals to cell proliferation and acts downstream of the Rheb GTPase. Genes Cells. 2006;11:1367–1379. doi:10.1111/j.1365-2443.2006.01025.x.
  • Weisman R, Roitburg I, Schonbrun M, Harari R, Kupiec M. Opposite effects of Tor1 and Tor2 on nitrogen starvation responses in fission yeast. Genetics. 2007;175:1153–1162. doi:10.1534/genetics.106.064170.
  • Nakashima A, Sato T, Tamanoi F. Fission yeast TORC1 regulates phosphorylation of ribosomal S6 proteins in response to nutrients and its activity is inhibited by rapamycin. J Cell Sci. 2010;123:777–786. doi:10.1242/jcs.060319.
  • Nakashima A, Otsubo Y, Yamashita A, Sato T, Yamamoto M, Tamanoi F. Psk1, an AGC kinase family member in fission yeast, is directly phosphorylated and controlled by TORC1 and functions as S6 kinase. J Cell Sci. 2012;125:5840–5849. doi:10.1242/jcs.111146.
  • Tanaka K, Yonekawa T, Kawasaki Y, Kai M, Furuya K, Iwasaki M, Murakami H, Yanagida M, Okayama H. Fission yeast Eso1p is required for establishing sister chromatid cohesion during S phase. Mol Cell Biol. 2000;20:3459–3469. doi:10.1128/MCB.20.10.3459-3469.2000.
  • Cipollina C, Alberghina L, Porro D, Vai M. SFP1 is involved in cell size modulation in respiro-fermentative growth conditions. Yeast. 2005;22:385–399. doi:10.1002/yea.1218.
  • Chia KH, Fukuda T, Sofyantoro F, Matsuda T, Amai T, Shiozaki K. Ragulator and GATOR1 complexes promote fission yeast growth by attenuating TOR complex 1 through Rag GTPases. elife. 2017;6:e30880. doi:10.7554/eLife.30880.
  • Kohda TA, Tanaka K, Konomi M, Sato M, Osumi M, Yamamoto M. Fission yeast autophagy induced by nitrogen starvation generates a nitrogen source that drives adaptation processes. Genes Cells. 2007;12:155–170. doi:10.1111/j.1365-2443.2007.01041.x.
  • Nakashima A, Hasegawa T, Mori S, Ueno M, Tanaka S, Ushimaru T, Sato S, Uritani M. A starvation-specific serine protease gene, isp6+, is involved in both autophagy and sexual development in Schizosaccharomyces pombe. Curr Genet. 2006;49:403–413. doi:10.1007/s00294-006-0067-0.
  • Marguerat S, Schmidt A, Codlin S, Chen W, Aebersold R, Bähler J. Quantitative analysis of fission yeast transcriptomes and proteomes in proliferating and quiescent cells. Cell. 2012;151:671–683. doi:10.1016/j.cell.2012.09.019.
  • Gordon C, McGurk G, Wallace M, Hastie ND. A conditional lethal mutant in the fission yeast 26 S protease subunit mts3+ is defective in metaphase to anaphase transition. J Biol Chem. 1996;271:5704–5711. doi:10.1074/jbc.271.10.5704.
  • Takeda K, Mori A, Yanagida M. Identification of genes affecting the toxicity of anti-cancer drug Bortezomib by genome-wide screening in S. pombe. PLoS One. 2011;6:e22021. doi:10.1371/journal.pone.0022021.
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24:437–440. doi:10.1016/S0968-0004(99)01460-7.
  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev. 2004;18:2491–2505. doi:10.1101/gad.1228804.
  • Martin DE, Soulard A, Hall MN. TOR regulates ribosomal protein gene expression via PKA and the Forkhead transcription factor FHL1. Cell. 2004;119:969–979. doi:10.1016/j.cell.2004.11.047.
  • Zencir S, Dilg D, Rueda MP, Shore D, Albert B. Mechanisms coordinating ribosomal protein gene transcription in response to stress. Nucleic Acids Res. 2020;48:11408–11420. doi:10.1093/nar/gkaa852.
  • Wapinski I, Pfiffner J, French C, Socha A, Thompson DA, Regev A. Gene duplication and the evolution of ribosomal protein gene regulation in yeast. Proc Natl Acad Sci USA. 2010;107:5505–5510. doi:10.1073/pnas.0911905107.
  • Kim MS, Hahn J-S. Role of CK2-dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae. Biochim Biophys Acta. 2016;1859:1004–1013. doi:10.1016/j.bbagrm.2016.06.003.
  • Pataki E, Weisman R, Sipiczki M, Miklos I. fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway. Curr Genet. 2017;63:91–101. doi:10.1007/s00294-016-0607-1.
  • Shetty M, Noguchi C, Wilson S, Martinez E, Shiozaki K, Sell C, Mell JC, Noguchi E. Maf1-dependent transcriptional regulation of tRNAs prevents genomic instability and is associated with extended lifespan. Aging Cell. 2020;19:e13068. doi:10.1111/acel.13068.
  • Albert B, Tomassetti S, Gloor Y, Dilg D, Mattarocci S, Kubik S, Hafner L, Shore D. Sfp1 regulates transcriptional networks driving cell growth and division through multiple promoter-binding modes. Genes Dev. 2019;33:288–293. doi:10.1101/gad.322040.118.
  • Fingerman I, Nagaraj V, Norris D, Vershon AK. Sfp1 plays a key role in yeast ribosome biogenesis. Eukaryot Cell. 2003;2:1061–1068. doi:10.1128/EC.2.5.1061-1068.2003.
  • Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, O'Shea EK. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc Natl Acad Sci USA. 2004;101:14315–14322. doi:10.1073/pnas.0405353101.
  • Hirai H, Ohta K. Comparative research: regulatory mechanisms of ribosomal gene transcription in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Biomolecules. 2023;13:288. doi:10.3390/biom13020288.
  • Lempiäinen H, Uotila A, Urban J, Dohnal I, Ammerer G, Loewith R, Shore D. Sfp1 interaction with TORC1 and Mrs6 reveals feedback regulation on TOR signaling. Mol Cell. 2009;33:704–716. doi:10.1016/j.molcel.2009.01.034.
  • Singh J, Tyers M. A Rab escort protein integrates the secretion system with TOR signaling and ribosome biogenesis. Genes Dev. 2009;23:1944–1958. doi:10.1101/gad.1804409.
  • Jorgensen P, Nishikawa JL, Breitkreutz B-J, Tyers M. Systematic identification of pathways that couple cell growth and division in yeast. Science. 2002;297:395–400. doi:10.1126/science.1070850.
  • Zhou D-z, Liu Y, Zhang D, Liu S-m, Yu L, Yang Y-f, Zhao T, Chen Z, Kan M-y, Zhang Z-f, et al. Variations in/nearby genes coding for JAZF1, TSPAN8/LGR5 and HHEX-IDE and risk of type 2 diabetes in Han Chinese. J Hum Genet. 2010;55:810–815. doi:10.1038/jhg.2010.117.
  • Alharbi KK, Ali Khan I, Syed R, Alharbi FK, Mohammed AK, Vinodson B, Al-Daghri NM. Association of JAZF1 and TSPAN8/LGR5 variants in relation to type 2 diabetes mellitus in a Saudi population. Diabetol Metab Syndr. 2015;7:92. doi:10.1186/s13098-015-0091-7.
  • Sung Y, Park S, Park SJ, Jeong J, Choi M, Lee J, Kwon W, Jang S, Lee M-H, Kim DJ, et al. Jazf1 promotes prostate cancer progression by activating JNK/Slug. Oncotarget. 2018;9:755–765. doi:10.18632/oncotarget.23146.
  • Kobiita A, Godbersen S, Araldi E, Ghoshdastider U, Schmid MW, Spinas G, Moch H, Stoffel M. The diabetes gene JAZF1 is essential for the homeostatic control of ribosome biogenesis and function in metabolic stress. Cell Rep. 2020;32:107846. doi:10.1016/j.celrep.2020.107846.
  • Dai X, Zhu M. Coupling of ribosome synthesis and translational capacity with cell growth. Trends Biochem Sci. 2020;45:681–692. doi:10.1016/j.tibs.2020.04.010.
  • Kelly SP, Bedwell DM. Both the autophagy and proteasomal pathways facilitate the Ubp3p-dependent depletion of a subset of translation and RNA turnover factors during nitrogen starvation in Saccharomyces cerevisiae. RNA. 2015;21:898–910. doi:10.1261/rna.045211.114.
  • Reja R, Vinayachandran V, Ghosh S, Pugh BF. Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev. 2015;29:1942–1954. doi:10.1101/gad.268896.115.
  • Schawalder S, Kabani M, Howald I, Choudhury U, Werner M, Shore D. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature. 2004;432:1058–1061. doi:10.1038/nature03200.
  • Rudra D, Zhao Y, Warner JR. Central role of Ifh1p–Fhl1p interaction in the synthesis of yeast ribosomal proteins. EMBO J. 2005;24:533–542. doi:10.1038/sj.emboj.7600553.
  • Wade J, Hall D, Struhl K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature. 2004;432:1054–1058. doi:10.1038/nature03175.
  • Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT, Thompson CM, Simon I, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science. 2002;298:799–804. doi:10.1126/science.1075090.
  • Albert B, Kos-Braun IC, Henras AK, Dez C, Rueda MP, Zhang X, Gadal O, Kos M, Shore D. A ribosome assembly stress response regulates transcription to maintain proteome homeostasis. Elife. 2019;8:e45002. doi:10.7554/eLife.45002.
  • Kasahara K, Nakayama R, Shiwa Y, Kanesaki Y, Ishige T, Yoshikawa H, Kokubo T. Fpr1, a primary target of rapamycin, functions as a transcription factor for ribosomal protein genes cooperatively with Hmo1 in Saccharomyces cerevisiae. PLoS Genet. 2020;16:e1008865. doi:10.1371/journal.pgen.1008865.
  • Freed EF, Bleichert F, Dutca LM, Baserga SJ. When ribosomes go bad: diseases of ribosome biogenesis. Mol Biosyst. 2010;6:481–493. doi:10.1039/b919670f.
  • Pelletier J, Thomas G, Volarević S. Ribosome biogenesis in cancer: new players and therapeutic avenues. Nat Rev Cancer. 2018;18:51–63. doi:10.1038/nrc.2017.104.
  • Morozumi Y, Shiozaki K. Conserved and divergent mechanisms that control TORC1 in yeasts and mammals. Genes (Basel). 2021;12:88. doi:10.3390/genes12010088.
  • Fukuda T, Sofyantoro F, Tai YT, Chia KH, Matsuda T, Murase T, Morozumi Y, Tatebe H, Kanki T, Shiozaki K. Tripartite suppression of fission yeast TORC1 signaling by the GATOR1-Sea3 complex, the TSC complex, and Gcn2 kinase. elife. 2021;10:e60969. doi:10.7554/eLife.60969.
  • Kunitomo H, Sugimoto A, Wilkinson C, Yamamoto M. Schizosaccharomyces pombe pac2+ controls the onset of sexual development via a pathway independent of the cAMP cascade. Curr Genet. 1995;28:32–38. doi:10.1007/BF00311879.
  • Morigasaki S, Chin LC, Hatano T, Emori M, Iwamoto M, Tatebe H, Shiozaki K. Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in fission yeast. J Cell Sci. 2019;132:jcs236133. doi:10.1242/jcs.236133.
  • Tatebe H, Shiozaki K. Identification of Cdc37 as a novel regulator of the stress-responsive mitogen-activated protein kinase. Mol Cell Biol. 2003;23:5132–5142. doi:10.1128/MCB.23.15.5132-5142.2003.
  • Kamada Y, Ando R, Izawa S, Matsuura A. Yeast Tor complex 1 phosphorylates eIF4E-binding protein, Caf20. Genes Cells. 2023;28:789–799. doi:10.1111/gtc.13067.
  • Otsubo Y, Yamashita A, Ohno H, Yamamoto M. S. pombe TORC1 activates the ubiquitin-proteasomal degradation of the meiotic regulator Mei2 in cooperation with Pat1 kinase. J Cell Sci. 2014;127:2639–2646. doi:10.1242/jcs.135517.
  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. doi:10.1186/gb-2013-14-4-r36.
  • Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12:R22. doi:10.1186/gb-2011-12-3-r22.
  • Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, Salzberg SL, Wold BJ, Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511–515. doi:10.1038/nbt.1621.
  • Harris MA, Rutherford KM, Hayles J, Lock A, Bähler J, Oliver SG, Mata J, Wood V. Fission stories: using PomBase to understand Schizosaccharomyces pombe biology. Genetics. 2022;220:iyab222. doi:10.1093/genetics/iyab222.
  • Wickham H. ggplot2: elegant graphics for data analysis. New York (NY): Springer-Verlag; 2016. doi:10.1007/978-3-319-24277-4.
  • Hirai H, Takemata N, Tamura M, Ohta K. Facultative heterochromatin formation in rDNA is essential for cell survival during nutritional starvation. Nucleic Acids Res. 2022;50:3727–3744. doi:10.1093/nar/gkac175.
  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi:10.14806/ej.17.1.200.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi:10.1038/nmeth.1923.
  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137. doi:10.1186/gb-2008-9-9-r137.
  • Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26. doi:10.1038/nbt.1754.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.