923
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Features of a pan balance that may support students’ developing understanding of mathematical equivalence

&
Pages 1-27 | Received 06 Nov 2018, Accepted 01 Dec 2019, Published online: 18 Dec 2019

References

  • Alibali, M. W. (1999). How children change their minds: Strategy change can be gradual or abrupt. Developmental Psychology, 35, 127–145. doi:10.1037/0012-1649.35.1.127.
  • Alibali, M. W., Knuth, E. J., Hattikudur, S., McNeil, N. M., & Stephens, A. C. (2007). A longitudinal examination of middle school students’ understanding of the equal sign and performance solving equivalent equations. Mathematics Thinking and Learning, 9, 221–247. doi:10.1080/10986060701360902.
  • Alibali, M. W., & Nathan, M. J. (2007). Teachers’ gestures as a means of scaffolding students’ understanding: Evidence from an early algebra lesson. In R. Goldman, R. Pea, B. Barron, & S. J. Derry (Eds.), Video research in the learning sciences (pp. 349–365). Mahwah, NJ: Erlbaum.
  • Ball, D. L. (1996). Teacher learning and the mathematics reform: What we think we know and what we need to learn. Phi Delta Kappan, 77, 500–508.
  • Baranes, R., Perry, M., & Stigler, J. W. (1989). Activation of real-world knowledge in the solution of word problems. Cognition and Instruction, 6, 287–318. doi:10.1207/s1532690xci0604_1.
  • Barlow, A. T., & Harmon, S. E. (2012). Problem contexts for thinking about equality: An additional resource. Childhood Education, 88, 96–101. doi:10.1080/00094056.2012.662121.
  • Baroody, A. J., & Coslick, R. T. (1998). Fostering children’s mathematical power: An investigative approach to K-8 mathematics instruction. Mahwah, NJ: Erlbaum.
  • Baroody, A. J., & Ginsburg, H. P. (1983). The effects of instruction on children’s understanding of the “equals” sign. Elementary School Journal, 84, 199–212. doi:10.1086/461356.
  • Behr, M., Erlwanger, S., & Nichols, E. (1980). How children view the equal sign. Mathematics Teaching, 92, 13–15.
  • Belenky, D. M., & Schalk, L. (2014). The effects of idealized and grounded materials on learning, transfer, and interest: An organizing framework for categorizing external knowledge representations. Educational Psychology Review, 26, 27–50. doi:10.1007/s10648-014-9251-9.
  • Blanton, M., Otálora, Y., Brizuela, B. M., Gardiner, A. M., Sawrey, K. B., Gibbins, A., & Kim, Y. (2018). Exploring kindergarten students’ early understandings of the equal sign. Mathematical Thinking and Learning, 20, 167–201. doi:10.1080/10986065.2018.1474534.
  • Bruner, J. S. (1966). Toward a theory of instruction. Cambridge, MA: Harvard University Press.
  • Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015). A specific misconception of the equal sign acts as a barrier to children’s learning of early algebra. Learning and Individual Differences, 38, 61–67. doi:10.1016/j.lindif.2015.01.001.
  • Caglayan, G., & Olive, J. (2010). Eighth grade students’ representations of linear equations on a cups and tiles model. Educational Studies in Mathematics, 74, 143–162. doi:10.1007/s10649-010-9231-z.
  • Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic & algebra in elementary school. Portsmouth, NH: Heinemann.
  • Carraher, T. N., Carraher, D. W., & Schliemann, A. D. (1987). Written and oral mathematics. Journal for Research in Mathematics Education, 18, 83–97. doi:10.2307/749244.
  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cognition and Instruction, 8, 293–332. doi:10.1207/s1532690xci0804_2.
  • Chesney, D. L., McNeil, N. M., Matthews, P. G., Byrd, C. E., Petersen, L. A., Wheeler, M. C., Fyfe, E. R., & Dunwiddie, A. E. (2014). Organization matters: Mental organization of addition knowledge relates to understanding math equivalence in symbolic form. Cognitive Development, 30, 30–46. doi:10.1016/j.cogdev.2014.01.001.
  • Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning (4th ed.). Hoboken, NJ: Wiley.
  • Clements, D. H., Battista, M. T., & Sarama, J. (2001). Logo and geometry. Journal for Research in Mathematics Education. Monograph, 10, i–177. doi:10.2307/749924.
  • Crooks, N. M., Alibali, M. W., & McNeil, N. M. (2011, March). Highlighting relevant problem features improves encoding of equivalence problems and leads to the generation of correct strategies. Poster presented at the Biennial Meeting of the Society for Research in Child Development, Montreal, Canada.
  • Cui, J., Popescu, V., Adamo-Villani, N., Cook, S. W., Duggan, K. A., & Friedman, H. S. (2017). Animation stimuli system for research on instructor gestures in education. IEEE Computer Graphics and Applications, 37(4), 72–83. doi:10.1109/MCG.2017.3271471.
  • Darling-Hammond, L., Zielezinski, M. B., & Goldman, S. (2014). Using technology to support at-risk students’ learning. Stanford Center for Opportunity Policy in Education. Retrieved from https://edpolicy.stanford.edu/publications/pubs/1241
  • Dorward, J. (2002). Intuition and research: Are they compatible? Teaching Children Mathematics, 8, 329–332.
  • Falkner, K. P., Levi, L., & Carpenter, T. P. (1999). Children’s understanding of equality: A foundation for algebra. Teaching Children Mathematics, 6, 232–236.
  • Filloy, E., & Rojano, T. (1989). Solving equations: The transition from arithmetic to algebra. For the Learning of Mathematics, 9(2), 19–25.
  • Fyfe, E. R., McNeil, N. M., & Borjas, S. (2015). Benefits of “concreteness fading” for children’s mathematics understanding. Learning and Instruction, 35, 104–120. doi:10.1016/j.learninstruc.2014.10.004.
  • Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: A systematic review. Educational Psychology Review, 26, 9–25. doi:10.1007/s10648-014-9249-3.
  • Goldstone, R. L., & Son, J. Y. (2005). The transfer of scientific principles using concrete and idealized simulations. The Journal of the Learning Sciences, 14, 69–110. doi:10.1207/s15327809jls1401_4.
  • Hiebert, J., & Carpenter, T. P. (1992). Learning and teaching with understanding. In D. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 65–97). New York, NY: MacMillan.
  • Hiebert, J., & Grouws, D. A. (2007). The effects of classroom mathematics teaching on students’ learning. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 371–404). Charlotte, NC: Information Age.
  • Howden, H. (1994). Algebra tiles for the overhead projector. Vernon Hills, IL: ETA/Cuisenaire.
  • Jacobs, V. R., Franke, M. L., Carpenter, T. P., Levi, L., & Battey, D. (2007). Professional development focused on children’s algebraic reasoning in elementary school. Journal for Research in Mathematics Education, 38, 258–288.
  • Johnson, V. M. (2000, April). An investigation of effects of instructional strategies on conceptual understanding of young children in mathematics. Paper presented at the Annual Meeting of the American Educational Research Association, New Orleans, LA.
  • Kaminski, J. A., & Sloutsky, V. M. (2013). Extraneous perceptual information interferes with children’s acquisition of mathematical knowledge. Journal of Educational Psychology, 105, 351–363. doi:10.1037/a0031040.
  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2009). Concrete instantiations of mathematics: A double-edged sword. Journal for Research in Mathematics Education, 40, 90–93.
  • Kaminski, J. A., Sloutsky, V. M., & Heckler, A. F. (2013). The cost of concreteness: The effect of nonessential information on analogical transfer. Journal of Experimental Psychology: Applied, 19, 14–29. doi:10.1037/a0031931.
  • Ketterlin-Geller, L. R., Jungjohann, K., Chard, D. J., & Baker, S. (2007). From arithmetic to algebra. Educational Leadership, 65, 66–71.
  • Kieran, C. (1980). The interpretation of the equal sign: Symbol for an equivalence relation vs. an operator symbol. Proceedings of the Fourth International Conference for the Psychology of Mathematics Education (163–169). Berkeley, CA. . doi:10.1152/jappl.1980.48.1.163.
  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12, 317–326. doi:10.1007/BF00311062.
  • Kilpatrick, J., Swafford, J., & Findell, B. (Eds.) (2001). Adding it up: Helping children learn mathematics. Washington, DC: National Academy Press.
  • Knuth, E., Stephens, A., McNeil, N., & Alibali, M. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 297–312.
  • Leavy, A., Hourigan, M., & McMahon, Á. (2013). Early understanding of equality. Teaching Children Mathematics, 20, 246–252. doi:10.5951/teacchilmath.20.4.0246.
  • Lehrer, R., & Schauble, L. (2002). Symbolic communication in mathematics and science: Co-constituting inscription and thought. In E. Amsel & J. Byrnes (Eds.), Language, literacy, and cognitive development: The development and consequences of symbolic communication (pp. 167–192). Mahwah, NJ: Erlbaum.
  • Li, X., Ding, M., Capraro, M. M., & Capraro, R. M. (2008). Sources of differences in children’s understandings of mathematical equality: Comparative analysis of teacher guides and student texts in China and the United States. Cognition and Instruction, 26, 195–217. doi:10.1080/07370000801980845.
  • Linchevski, L., & Herscovics, N. (1996). Crossing the cognitive gap between arithmetic and algebra: Operating on the unknown in the context of equations. Educational Studies in Mathematics, 30, 39–65. doi:10.1007/BF00163752.
  • Lindvall, C. M., & Ibarra, C. G. (1980). Incorrect procedures used by primary grade pupils in solving open addition and subtraction sentences. Journal for Research in Mathematics Education, 11, 50–62. doi:10.2307/748732.
  • Magruder, R., & Mohr-Schroeder, M. (2013). Solving equations is all about balance: Using virtual manipulatives in the middle school classroom. In D. Polly (Ed.), Common core mathematics standards and implementing digital technologies (pp. 201–214). Hershey, PA: IGI Global.
  • Manches, A., & O’Malley, C. (2012). Tangibles for learning: A representational analysis of physical manipulation. Personal and Ubiquitous Computing, 16, 405–419. doi:10.1007/s00779-011-0406-0.
  • Mann, R. L. (2004). Balancing act: The truth behind the equals sign. Teaching Children Mathematics, 11, 65–69.
  • Matthews, P., & Rittle-Johnson, B. (2009). In pursuit of knowledge: Comparing self-explanations, concepts, and procedures as pedagogical tools. Journal of Experimental Child Psychology, 104, 1–21. doi:10.1016/j.jecp.2008.08.004.
  • Matthews, P., Rittle-Johnson, B., McEldoon, K., & Taylor, R. (2012). Measure for measure: What combining diverse measures reveals about children’s understanding of the equal sign as an indicator of mathematical equality. Journal for Research in Mathematics Education, 43, 316–350. doi:10.5951/jresematheduc.43.3.0316.
  • Mayer, R. E. (2005). Principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 183–200). New York, NY: Cambridge University Press.
  • Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–119. doi:10.1016/S0959-4752(01)00018-4.
  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational Psychologist, 38, 43–52. doi:10.1207/S15326985EP3801_6.
  • McNeil, N. (2007). U-shaped development in math: 7-year-olds outperform 9-year-olds on equivalence problems. Developmental Psychology, 43, 687–695. doi:10.1037/0012-1649.43.3.687.
  • McNeil, N., & Alibali, M. (2005a). Knowledge change as a function of mathematics experiences: All contexts are not created equal. Journal of Cognition and Development, 6, 285–306. doi:10.1207/s15327647jcd0602_6.
  • McNeil, N., & Alibali, M. (2005b). Why won’t you change your mind? Knowledge of operational patterns hinders learning and performance on equations. Child Development, 76, 883–899. doi:10.1111/cdev.2005.76.issue-4.
  • McNeil, N., Fyfe, E., Petersen, L., Dunwiddie, A., & Brletic-Shipley, H. (2011). Benefits of practicing 4 = 2 + 2; Nontraditional problem formats facilitate children’s understanding of mathematical equivalence. Child Development, 82, 1620–1633. doi:10.1111/j.1467-8624.2011.01622.x.
  • McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22, 440–448. doi:10.1016/j.learninstruc.2012.05.001.
  • McNeil, N. M., Rittle-Johnson, B., Hattikudur, S., & Petersen, L. A. (2010). Continuity in representation between children and adults: Arithmetic knowledge hinders undergraduates’ algebraic problem solving. Journal of Cognition and Development, 11, 437–457. doi:10.1080/15248372.2010.516421.
  • Molina, M., & Ambrose, R. (2008). From an operational to a relational conception of the equal sign. Thirds graders’ developing algebraic thinking. Focus on Learning Problems in Mathematics, 30, 61–80.
  • Moyer, P. S., Bolyard, J. J., & Spikell, M. A. (2002). What are virtual manipulatives? Teaching Children Mathematics, 8, 372–377.
  • National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA: Authors.
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common core state standards for mathematics. Washington, DC: Authors.
  • National Governors Association Center for Best Practices & Council of Chief State School Officers. (2012). Common core state standards for mathematics. Washington, DC: Authors.
  • Pea, R. D. (2004). The social and technological dimensions of scaffolding and related theoretical concepts for learning, education, and human activity. Journal of the Learning Sciences, 13, 423–451. doi:10.1207/s15327809jls1303_6.
  • Perry, M. (1991). Learning and transfer: Instructional conditions and conceptual change. Cognitive Development, 6, 449–468. doi:10.1016/0885-2014(91)90049-J.
  • Perry, M., Berch, D., & Singleton, J. L. (1995). Constructing shared understanding: The role of nonverbal input in learning contexts. Journal of Contemporary Legal Issues, 6, 213–235.
  • Perry, M., Church, R. B., & Goldin-Meadow, S. (1988). Transitional knowledge in the acquisition of concepts. Cognitive Development, 3, 359–400. doi:10.1016/0885-2014(88)90021-4.
  • Piaget, J., & Inhelder, B. (1969). The psychology of the child. H. Weaver, Trans. New York, NY: Basic (Original work published 1966).
  • Powell, S. (2012). Equations and the equal sign in elementary mathematics textbooks. The Elementary School Journal, 112, 627–648. doi:10.1086/665009.
  • Presmeg, N. C. (1997). Reasoning with metaphors and metonymies in mathematics learning. In L. D. English (Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 267–279). Mahwah, NJ: Erlbaum.
  • Rasmussen, S. (1977). Algebra tiles. Emeryville, CA: Key Curriculum Press.
  • Renwick, E. M. (1932). Children’s misconceptions concerning the symbols for mathematical equality. British Journal of Educational Psychology, 2, 173–183. doi:10.1111/bjep.1932.2.issue-2.
  • Rittle-Johnson, B., & Alibali, M. (1999). Conceptual and procedural knowledge of mathematics: Does one lead to the other? Journal of Educational Psychology, 91, 175–189. doi:10.1037/0022-0663.91.1.175.
  • Rittle-Johnson, B., Matthews, P. G., Taylor, R. S., & McEldoon, K. L. (2011). Assessing knowledge of mathematical equivalence: A construct-modeling approach. Journal of Educational Psychology, 103, 85–104. doi:10.1037/a0021334.
  • Rojano, T., & Martinez, M. (2009). From concrete modeling to algebraic syntax: Learning to solve linear equations with a virtual balance. In S. L. Swars, D. W. Stinson, & S. Lemons-Smith (Eds.), Proceedings of the 31st annual meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (vol. 5, pp. 235–243). Atlanta, GA: Georgia State University.
  • Sarama, J., & Clements, D. H. (2009). “Concrete” computer manipulatives in mathematics education. Child Development Perspectives, 3, 145–150. doi:10.1111/j.1750-8606.2009.00095.x.
  • Sarama, J., & Clements, D. H. (2016). Physical and virtual manipulatives: What is “concrete”? In P. S. Moyer-Packenham (Ed.), International perspectives on teaching and learning mathematics with virtual manipulatives (pp. 71–93). Cham, Switzerland: Springer.
  • Seo, K. H., & Ginsburg, H. P. (2003). You’ve got to carefully read the math sentence … : Classroom context and children’s interpretations of the equals sign. In A. J. Baroody & A. Dowker (Eds.), The development of arithmetic concepts and skills: Recent research and theory (pp. 161–187). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Sherman, J., & Bisanz, J. (2009). Equivalence in symbolic and non-symbolic contexts: Benefits of solving problems with manipulatives. Journal of Educational Psychology, 101, 88–100. doi:10.1037/a0013156.
  • Skemp, R. R. (1986). The psychology of learning mathematics (2nd ed.). London, England: Penguin.
  • Sowell, E. J. (1989). Effects of manipulative materials in mathematics instruction. Journal of Research in Mathematics Education, 20, 498–505. doi:10.2307/749423.
  • Stacey, K., & MacGregor, M. (1997). Multiple referents and shifting meanings of unknowns in students’ use of algebra. In E. Pehkonen (Ed.), Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education (vol. 4, pp. 190–197), Lahti, Finland. doi:10.1038/nsb0397-190.
  • Stephens, A. C., Ellis, A. B., Blanton, M., & Brizuela, B. M. (2017). Algebraic thinking in the elementary and middle grades. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 386-420). Reston, VA: National Council of Teachers of Mathematics.
  • Stephens, A. C., Knuth, E. J., Blanton, M. L., Isler, I., Gardiner, A. M., & Marum, T. (2013). Equation structure and the meaning of the equal sign: The impact of task selection in eliciting elementary students’ understandings. The Journal of Mathematical Behavior, 32, 173–182. doi:10.1016/j.jmathb.2013.02.001.
  • Suh, J., & Moyer-Packenham, P. S. (2007). Developing students’ representational fluency using virtual and physical algebra balances. Journal of Computers in Mathematics and Science Teaching, 26, 155–173.
  • Thompson, P. W. (1992). Notations, conventions, and constraints: Contributions to effective uses of concrete materials in elementary mathematics. Journal for Research in Mathematics Education, 23, 123–147. doi:10.2307/749497.
  • Thompson, P. W., & Thompson, A. G. (1990). Salient aspects of experience with concrete manipulatives. In F. Hitt (Ed.), Proceedings of the 14th annual meeting of the International Group for the Psychology of Mathematics (Vol. 3, pp. 337–343). Mexico City: International Group for the Psychology of Mathematics Education.
  • Uttal, D., O’Doherty, K., Newland, R., Hand, L., & DeLoache, J. (2009). Dual representation and the linking of concrete and symbolic representations. Child Development Perspectives, 3, 156–159. doi:10.1111/j.1750-8606.2009.00097.x.
  • Uttal, D. H., Scudder, K. V., & DeLoache, J. S. (1997). Manipulatives as symbols: A new perspective on the use of concrete objects to teach mathematics. Journal of Applied Developmental Psychology, 18, 37–54. doi:10.1016/S0193-3973(97)90013-7.
  • Van de Walle, J. (2013). Elementary and middle school mathematics (8th ed.). Boston, MA: Pearson Education.
  • Vlassis, J. (2002). The balance model: Hindrance or support for the solving of linear equations with one unknown. Educational Studies in Mathematics, 49, 341–359. doi:10.1023/A:1020229023965.
  • Vygotsky, L. S. (1978). Mind in society: The development of higher mental process. Cambridge, MA: Harvard.
  • Warren, E., & Cooper, T. J. (2005). Young children’s ability to use the balance strategy to solve for unknowns. Mathematics Education Research Journal, 17, 58–72. doi:10.1007/BF03217409.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.