5,384
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Curricular approaches to algebra in Estonia, Finland and Sweden – a comparative study

ORCID Icon, ORCID Icon &
Pages 49-71 | Received 22 Jun 2019, Accepted 06 Mar 2020, Published online: 30 Mar 2020

References

  • Andrews, P. (2007). The curricular importance of mathematics: A comparison of English and Hungarian teachers’ espoused beliefs. Journal of Curriculum Studies, 39(3), 317–338. https://doi.org/10.1080/00220270600773082
  • Andrews, P., Ryve, A., Hemmi, K., & Sayers, J. (2014). PISA, TIMSS and Finnish mathematics teaching: An enigma in search of an explanation. Educational Studies in Mathematics., 87(1), 7—26. https://doi.org/10.1007/s10649-014-9545-3
  • Arcavi, A. (1994). Symbol sense: Informal sense-making in formal mathematics. For the Learning of Mathematics, 14(3), 24—35.
  • Arcavi, A., Drijvers, P., & Stacey, K. (2017). The teaching and learning of algebra: Ideas, insights and activities. Routledge.
  • Baek, J. M. (2008). Developing algebraic thinking through explorations in multiplication. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics, 70th yearbook (pp. 141–154). National Council of Teachers of Mathematics.
  • Bell, A. (1996). Problem-solving approaches to algebra: Two aspects. In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra (pp. 167—185). Mathematics Education Library, vol 18. Springer, Dordrecht.
  • Bergqvist, E., & Bergqvist, T. (2017). The role of the formal written curriculum in standards-based reform. Journal of Curriculum Studies, 49(2), 149–168. https://doi.org/10.1080/00220272.2016.1202323
  • Bergsten, C., Häggström, J., & Lindberg, L. (1997). Nämnaren tema: Algebra för alla [Nämnaren theme: Algebra for all]. Nationellt Centrum för Matematikdidaktik (NCM).
  • Blanton, M., Levi, L., Crites, T., Dougherty, B., & Zbiek, R. M. (2011). Developing essential understanding of algebraic thinking for teaching mathematics in grades 3-5. National Council of Teachers of Mathematics.
  • Blanton, M., Stephens, A., Knuth, E., Murphey Gardiner, A., Isler, I., & Kim, J.-S. (2015). The development of children’s algebraic thinking: The impact of a comparative early algebra intervention in third grade. Journal for Research in Mathematics Education, 46(1), 39–87. https://doi.org/10.5951/jresematheduc.46.1.0039
  • Bokhove, C., & Drijvers, P. (2010). Symbol sense behavior in digital activities. For the Learning of Mathematics, 30(3), 43–49. https://flm-journal.org/Articles/45D5ED606856931839C164A32C1092.pdf
  • Brandell, G., Hemmi, K., & Thunberg, H. (2008). The widening gap – A Swedish perspective. Mathematics Education Research Journal, 20(2), 38–56. https://doi.org/10.1007/BF03217476
  • Bråting, K., Hemmi, K., & Madej, L. (2018). Teoretiska och praktiska perspektiv på generaliserad aritmetik [Theoretical and practical perspectives on generalized arithmetic]. In J. Häggström, Y. Liljekvist, J. Bergman Ärlebäck, M. Fahlgren, & O. Olande (Eds.), Perspectives on professional development of mathematics teachers. Proceedings of MADIF 11. (27–36). NCM & SMDF.
  • Bråting, K., Madej, L., & Hemmi, K. (2019). Development of algebraic thinking: Opportunities offered by the Swedish curriculum and elementary mathematics textbooks. Nordic Studies in Mathematics Education, 24(1), 101–124. http://ncm.gu.se/nomad-sokresultat-vy?brodtext=24_1_brating
  • Bråting, K., & Pejlare, J. (2015). On the relations between historical epistemology and students’ conceptual developments in mathematics. Educational Studies in Mathematics, 89(2), 251–265. https://doi.org/10.1007/s10649-015-9600-8
  • Cai, J. (2004). Developing algebraic thinking in the earlier grades: A case study of the Chinese elementary school curriculum. The Mathematics Educator (Singapore), 8(1), 107–130. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.580.4108&rep=rep1&type=pdf
  • Cai, J., Lew, H. C., Morris, A., Moyer, J. C., Ng, S. F., & Schmittau, J. (2005). The development of students’ algebraic thinking in earlier grades. ZDM – the International Journal on Mathematics Education, 37(1), 5–15. https://doi.org/10.1007/BF02655892
  • Cai, J., Nie, B., & Moyer, J. C. (2010). The teaching of equation solving: Approaches in standards-based and traditional curricula in the United States. Pedagogies: An International Journal, 5(3), 170–186. https://doi.org/10.1080/1554480X.2010.485724
  • Carpenter, T. P., Franke, M. L., & Levi, L. (2003). Thinking mathematically: Integrating arithmetic & algebra in elementary school. Heinemann.
  • Carraher, D. W., & Schliemann, A. (2018). Cultivating early algebraic thinking. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5-to-12-year-olds. ICME-13 monographs (pp. 107–138). Springer.
  • Carraher, D. W., Schliemann, A., Brizuela, B., & Earnest, D. (2006). Arithmetic and algebra in early mathematics education. Journal for Research in Mathematics Education, 37(2), 87–115. https://www.jstor.org/stable/30034843
  • Clarke, D. (2013, Feb 6th–Feb 10th). The validity-comparability compromise in crosscultural studies in mathematics education. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of the European Society for Research in Mathematics Education, Antalya (pp. 1855–1864). Ankara, Turkey: Middle East Technical University and ERME.
  • Confrey, J., Gianopulos, G., McGowan, W., Shah, M., & Belcher, M. (2017). Scaffolding learner-centered curricular coherence using learning maps and diagnostic assessments designed around mathematics learning trajectories. ZDM – the International Journal on Mathematics Education, 49(5), 717–734. https://doi.org/10.1007/s11858-017-0869-1
  • Davydov, V. V. (1990). Soviet studies in mathematics education, Vol. 2, types of generalization in instruction: Logical and psychological problems in the structuring of school curricula. National Council of Teachers of Mathematics, 1906 Association Dr., Reston, VA 22091.
  • Davydov, V. V., & Rubtsov, V. V. (2018). Developing reflective thinking in the process of learning activity. Journal of Russian & East European Psychology, 55(4–6), 287–571. https://doi.org/10.1080/10610405.2018.1536008
  • Eesti Vabariigi Valitsuse määrus. (2011). Põhikooli riiklik õppekava [Estonian national curriculum for comprehensive school]. https://www.riigiteataja.ee/aktilisa/1140/1201/1001/VV1_lisa3.pdf
  • Finnish National Board of Education. (2016). National Core Curriculum for Basic Education 2014. Next Print Oy.
  • Fong, N. S. (2004). Developing algebraic thinking in early grades: Case study of the Singapore primary mathematics curriculum. The Mathematics Educator, 8(1), 39–59. https://pdfs.semanticscholar.org/aac9/ebe9af94353a9f0d814f6d173269ab573971.pdf
  • Greenes, C. E., & Rubenstein, R. (2008). Algebra and algebraic thinking in school mathematics, 70th Yearbook. National Council of Teachers of Mathematics.
  • Grønmo, L. S., Borge, I. C., & Hole, A. (2014). Mathematics in the Nordic countries – Trends and challenges in students’ achievement in Norway, Sweden, Finland and Denmark. In K. Yang Hansen, J.-E. Gustafsson, M. Rosén, S. Sulkunen, K. Nissinen, P. Kupari, & A. Hole (Eds.), Northern lights on TIMSS and PIRLS 2011 - differences and similarities in the Nordic countries (pp. 107–136). Nordic Council of Ministers.
  • Häggström, J., Kilhamn, C., & Fredriksson, M. (2019). Algebra i grundskolan [Algebra in comprehensive school]. Nationellt Centrum för Matematikdidaktik, NCM.
  • Hemmi, K., Bråting, K., Liljekvist, Y., Prytz, J., Madej, L., Pejlare, J., & Palm Kaplan, K. (2018). Characterizing Swedish school algebra – Initial findings from analyses of steering documents, textbooks and teachers’ discourses. In E. Norén, H. Palmér, & A. Cooke (Eds.), Nordic research in mathematics education, Papers of NORMA 17, The Eighth Nordic Conference on Mathematics Education, Stockholm (pp. 299–308). Stockholm: Skrifter från SMDF, Nr. 12.
  • Hemmi, K., Krzywacki, H., & Partanen, A.-M. (2017). Mathematics curriculum: The case of Finland. In D. R. Thompson, M. A. Huntley, C. Suurtamm (Eds.), International perspectives on mathematics curriculum (pp. 71–102). Information Age Publishing.
  • Hemmi, K., Lepik, L., Madej, L., Bråting, K., & Smedlund, J. (2019). Introduction to early algebra in Estonia, Finland and Sweden – Some distinctive features identified in textbooks for Grades 1-3. In U. T. Jankvist, M. Van den Heuvel-panhuizen, & M. Veldhuis (Eds.), Proceedings of the Eleventh Congress of the European Society for Research in Mathematics Education (CERME11, February 6 – 10, 2019). Utrecht, The Netherlands: Freudenthal Group & Freudenthal Institute, Utrecht University and ERME.
  • Hemmi, K., Lepik, M., & Viholainen, A. (2013). Analysing proof-related competences in Estonian, Finnish and Swedish mathematics curricula—towards a framework of developmental proof. Journal of Curriculum Studies, 45(3), 354–378. https://doi.org/10.1080/00220272.2012.754055
  • Hemmi, K., & Löfwall, C. (2011). Making discovery function of proof visible for students. In M. Pytlak, T. Rowland, & E. Swoboda (Eds.) Proceedings of the 7th Conference of European Researchers in Mathematics Education. (CERME 7, February 9- 13, 2011) (pp. 172-180). Rzeszów, Poland: University of Rzeszów and ERME.
  • Herscovics, N., & Linchevski, L. (1994). A cognitive gap between arithmetic and algebra. Educational Studies in Mathematics, 27(1), 59–78. https://doi.org/10.1007/BF01284528
  • Hewitt, D. (2014). A symbolic dance: The interplay between movement, notation, and mathematics on a journey toward solving equations. Mathematical Thinking and Learning, 16(1), 1–31. https://doi.org/10.1080/10986065.2014.857803
  • Hiebert, J., Stigler, J. W., Jacobs, J. K., Givvin, K. B., Garnier, H., Smith, M., Hollingsworth, H., Manaster, A., Wearne, D., & Gallimore, R. (2005). Mathematics teaching in the United States today (and tomorrow): Results from the TIMSS 1999 video study. Educational Evaluation and Policy Analysis, 27(2), 111–132. https://doi.org/10.3102/01623737027002111
  • Jablonka, E., & Gellert, U. (2010). Ideological roots and uncontrolled flowering of alternative curriculum conceptions. In U. Gellert, E. Jablonka, & C. Morgan (Eds.), Proceedings of the Sixth International Mathematics Education and Society Conference Vol. I (pp. 31–49). Berlin: Freie Universität.
  • Jupri, A., Drijvers, P., & van den Heuvel-panhuizen, M. (2014). Difficulties in initial algebra learning in Indonesia. Mathematics Education Research Journal, 26(4), 683–710. https://doi.org/10.1007/s13394-013-0097-0
  • Kaput, J. J. (2008). What is algebra? What is algebraic reasoning? In J. J. Kaput, D. Carraher, & M. Blanton (Eds.), Algebra in the early grades (pp. 5–18). Lawrence Erlbaum.
  • Kaput, J. J. (2000). Transforming algebra from an engine of inequity to an engine of mathematical power by” algebrafying” the K-12 curriculum. (Report No. Ed441 664) Washington, DC: Office of Educational Research and Improvement.
  • Katz, V., & Barton, B. (2007). Stages in the history of algebra with implications from teaching. Educational Studies in Mathematics, 66(2), 185–201. https://doi.org/10.1007/s10649-006-9023-7
  • Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326. https://doi.org/10.1007/BF00311062
  • Kieran, C. (2004). Algebraic thinking in the early grades. What is it? The Mathematics Educator (Singapore), 8(1), 139–151. https://gpc-maths.org/data/documents/kieran2004.pdf
  • Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Information Age Publishing.
  • Kieran, C. (Ed.). (2018). Teaching and learning algebraic thinking with 5- to 12-year-olds. ICME-13 monographs. Springer.
  • Kieran, C., Pang, J., Schifter, D., & Ng., S. F. (2016). Early algebra. Research into its nature, its learning, its teaching (ICME-13, Topical Surveys). New York: Springer.
  • Kilhamn, C. (2014). When does a variable vary? Identifying mathematical content knowledge for teaching variables. Nordisk Matematikkdidaktikk - Nordic Studies in Mathematics Education, 19(3–4), 83–100. https://gup.ub.gu.se/publication/208569
  • Kilpatrick, J., & Izsak, A. (2008). A history of algebra in the school curriculum. In C. E. Greenes & R. Rubenstein (Eds.), Algebra and algebraic thinking in school mathematics, 70th Yearbook (pp. 3–19). National Council of Teachers of Mathematics.
  • Kilpatrick, J., Swafford, J., & Findell, B. (2001). Adding it up: Helping children learn mathematics. National Academic Press.
  • Lagrange, J.-B. (2014). A functional perspective on the teaching of algebra: Current challenges and the contribution of technology. International Journal for Technology in Mathematics Education, 21(1), 3–10. https://hal.archives-ouvertes.fr/hal-01740456/document
  • Lepik, M., Grevholm, B., & Viholainen, A. (2015). Using textbooks in the mathematics classroom – The teachers’ view. Nordic Studies in Mathematics Education, 20(3–4), 129–156.
  • Leung, F. K. S., Park, K., Holton, D., & Clarke, D. (Eds). (2014). Algebra teaching around the world. Sense Publishers.
  • Lloyd, G. M., Cai, J., & Tarr, J. E. (2017). Issues in curriculum studies: Evidence-based insights and future directions. In J. Cai (Ed.), Compendium for research in mathematics education (pp. 824–853). National Council of Teachers of Mathematics.
  • Mason, J. (2018). How early is too early for thinking algebraically? In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 329–350). Springer.
  • Mullis, I. V. S., Martin, M. O., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 international mathematics report. International Association for the Evaluation of Educational Achievement, IEA. Boston Coll., Chestnut Hill, MA.
  • Murray, Å., & Liljefors, R. (1983). Matematik i svensk skola. Utbildningsforskning, FoU-rapport 46 [Mathematics in the Swedish school. Educational research, FoU-report 46]. Swedish National Agency for Education and Liber.
  • Nathan, M. J., & Koellner, K. (2007). A framework for understanding and cultivating the transition from arithmetic to algebraic reasoning. Mathematical Thinking and Learning, 9(3), 179–192. https://doi.org/10.1080/10986060701360852
  • National Council of Teachers of Mathematics. (1989). Curriculum and Evaluation Standards for School Mathematics. Reston, VA.
  • National Council of Teachers of Mathematics. (2000). Curriculum and evaluation standards for school mathematics. Reston, VA.
  • Organization for Economic Co-operation and Development, OECD. (2018). PISA 2012, mathematics test levels. https://www.oecd.org/pisa/test-2012/
  • Organization for Economic Co-operation and Development, OECD. (2019). Mathematics performance (PISA) (indicator). Retrieved 26 September 2019 from https://doi.org/10.1787/04711c74-en
  • Prediger, S. (2010). How to develop mathematics for teaching and for understanding: The case of meanings of the equal sign. Journal for Mathematics Teacher Education, 13(1), 73–93. https://doi.org/10.1007/s10857-009-9119-y
  • Radford, L. (2018). The emergence of symbolic algebraic thinking in primary school. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp. 1–23). Springer.
  • Röj-Lindberg, A.-S., Partanen, A.-M., & Hemmi, K. (2017, February 1-5). Introduction to equation solving for a new generation of algebra learners. In T. Dooley & G. Gueudet (Eds.), Proceedings of the Tenth Congress of the European Society for Research in Mathematics Education, CERME10 (pp. 495–503). Dublin, Ireland: DCU Institute of Education and ERME.
  • Schifter, D. (2018). Early algebra as analysis of structure. A focus on structure. In C. Kieran (Ed.), Teaching and learning algebraic thinking with 5- to 12-year-olds (pp. 309–327). Springer.
  • Schmittau, J. (2004). Vygotskian theory and mathematics education: Resolving the conceptual-procedural dichotomy. European Journal of Psychology of Education, 19(1), 19–43. https://doi.org/10.1007/BF03173235
  • Schmittau, J. (2005). The development of algebraic thinking. ZDM – the International Journal on Mathematics Education, 37(1), 16–22. https://doi.org/10.1007/BF02655893
  • Schmittau, J., & Morris, A. (2004). The development of algebra in the elementary mathematics curriculum of V.V. Davydov. The Mathematics Educator, 8(10), 60–87. http://math-teach.2386.n7.nabble.com/attachment/22746/0/Development%20of%20Algebra%20in%20Elementary%20Math%20by%20Schmittau.pdf
  • Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning – Epistemology, history, and semiotics interacting. Educational Studies in Mathematics, 77(1), 79–104. https://doi.org/10.1007/s10649-011-9301-x
  • Shin, N., Stevens, S. Y., Short, H., & Krajcik, J. (2009). Learning progressions to support coherence curricula in instructional material, instruction, and assessment design. Paper presented at the Learning Progressions in Science (LeaPS) Conference [ Paper presentation]. Iowa City, IA.
  • The Swedish National Agency for Education. (2008). Svenska elevers matematikkunksaper I TIMSS 2007 [Swedish students’ knowledge in mathematics in TIMSS 2007]. https://www.skolverket.se/publikationsserier/aktuella-analyser/2010/svenska-elevers-matematikkunskaper-i-timss-2007
  • The Swedish National Agency for Education. (2011). Kursplan i matematik i grundskolan. [Syllabus for mathematics in compulsory school]. Lgr 11. http://www.skolverket.se
  • The Swedish National Agency for Education. (2012). TIMSS 2011 – Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv [Swedish school students’ skills in mathematics and science in an international perspective]. https://www.skolverket.se/publikationsserier/rapporter/2012/timss-2011
  • The Swedish National Agency for Education. (2016). TIMSS 2015 – Svenska grundskoleelevers kunskaper i matematik och naturvetenskap i ett internationellt perspektiv [Swedish school students’ skills in mathematics and science in an international perspective]. https://www.skolverket.se/getFile?file=3707
  • Usiskin, Z. (1988). Conceptions of school algebra and uses of variables. In A. Coxford & A. Shuite (Eds.), The ideas of algebra, K-12. 1988 Yearbook (pp. 8–19). National Council of Teachers of Mathematics.
  • Valverde, G. A., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According to the book. Kluwer Academic Publishers.
  • Van den Akker, J. (2003). Curriculum perspectives: An introduction. In J. van den Akker, W. Kuiper, & U. Hameyer (Eds.), Curriculum landscapes and trends (pp. 1–10). Kluwer Academic Publishers.
  • Van den Heuvel-panhuizen, M. (2003). The didactical use of models in realistic mathematics education: An example from a longitudinal trajectory on percentage. Educational Studies in Mathematics, 54(1), 9–35. https://doi.org/10.1023/B:EDUC.0000005212.03219.dc
  • Zinchenko, V. P. (2011). For the eightieth anniversary of the birthday of V.V. Davydov (1930-1998). The Experience of Thinking about Thinking. Journal of Russian & East European Psychology, 49(6), 18–44. https://doi.org/10.2753/RPO1061-0405490602