550
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Exploring variability during data preparation: a way to connect data, chance, and context when working with complex public datasets

, &

References

  • Aridor, K., & Ben-Zvi, D. (2018). Statistical modeling to promote students’ aggregate reasoning with sample and sampling. ZDM, 50(7), 1165–1181. https://doi.org/10.1007/s11858-018-0994-5
  • Ben-Zvi, D., Bakker, A., ., & Makar, K. (2015). Learning to reason from samples. Educational Studies in Mathematics, 88(3), 291–303. https://doi.org/10.1007/s10649-015-9593-3
  • Biehler, R. (1994). Probabilistic thinking, statistical reasoning, and the search for causes—Do we need a probabilistic revolution after we have taught data analysis. In J. Garfield (Ed.), Research papers from ICOTS 4 (pp. 20–37). University of Minnesota.
  • Biehler, R., Frischemeier, D., & Podworny, S. (2017). Reasoning about models and modelling in the context of informal statistical inference. Statistics Education Research Journal, 16(2), 8–12
  • Biehler, R., Frischemeier, D., & Podworny, S. (2018). Elementary preservice teachers’ reasoning about statistical modeling in a civic statistics context. ZDM, 50(7), 1237–1251. https://doi.org/10.1007/s11858-018-1001-x
  • Cassel, B., & Topi, H. (2015, October). Strengthening data science education through collaboration. In Workshop on data science education workshop report (Vol. 7, p. 27).
  • Chick, H. L., Pfannkuch, M., & Watson, J. M. (2005). Transnumerative thinking: Finding and telling stories within data. Curriculum Matters, 1, 87–109. https://doi.org/10.18296/cm.0063
  • Collins, A., & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide inquiry. Educational Psychologist, 28(1), 25–42. https://doi.org/10.1207/s15326985ep2801_3
  • Cooper, L. L., & Shore, F. S. (2010). The effects of data and graph type on concepts and visualizations of variability. Journal of Statistics Education, 18(2)
  • Engel, J. (2017). Statistical literacy for active citizenship: A call for data science education. Statistics Education Research Journal, 16(1), 44–49. https://iase-web.org/documents/SERJ/SERJ16(1)_Engel.pdf
  • Erickson, T., Wilkerson, M. H., Finzer, W., & Reichsman, F. (2019). Data moves. Technology Innovations in Statistics Education, 12(1). https://escholarship.org/uc/item/0mg8m7g6
  • Finzer, W. (2013). The data science education dilemma. Technology Innovations in Statistics Education, 7(2)
  • Gil, E., & Gibbs, A. L. (2017). Promoting modeling and covariational reasoning among secondary school students in the context of big data. Statistics Education Research Journal, 16(2), 163–190. https://iase-web.org/documents/SERJ/SERJ16%282%29_Gil.pdf
  • Goldin, G. A. (2000). A scientific perspective on structured, task-based interviews in mathematics education research. In A. E. Kelly & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education, (pp. 517–544). Mahwah, N.J.: Lawrence Erlbaum Associates.
  • Gould, R. (2017). Data literacy is statistical literacy. Statistics Education Research Journal, 16(1), 22–25. https://iase-web.org/documents/SERJ/SERJ16(1)_Gould.pdf
  • Gould, R. (2017). Data literacy is statistical literacy. Statistics Education Research Journal, 16(1), 22–25
  • Kandel, S., Heer, J., Plaisant, C., Kennedy, J., Van Ham, F., Riche, N. H., Weaver, C., Lee, B., Brodbeck, D., & Buono, P. (2011). Research directions in data wrangling: Visualizations and transformations for usable and credible data. Information Visualization, 10(4), 271–288. https://doi.org/10.1177/1473871611415994
  • Konold, C., Harradine, A., & Kazak, S. (2007). Understanding distributions by modeling them. International Journal of Computers for Mathematical Learning, 12(3), 217–230. https://doi.org/10.1007/s10758-007-9123-1
  • Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education, 2(1). https://escholarship.org/uc/item/38p7c94v
  • Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes. Journal for Research in Mathematics Education, 33(4), 259–289. https://doi.org/10.2307/749741
  • Lehrer, R. (2017). Modeling signal-noise processes supports student construction of a hierarchical image of sample. Statistics Education Research Journal, 16(2), 64–85. https://iase-web.org/documents/SERJ/SERJ16(2)_Lehrer.pdf
  • Lehrer, R., Kim, M.-J., & Schauble, L. (2007). Supporting the development of conceptions of statistics by engaging students in measuring and modeling variability. International Journal of Computers for Mathematical Learning, 12(3), 195–216. https://doi.org/10.1007/s10758-007-9122-2
  • Maher, C. A., & Sigley, R. (2014). Task-based interviews in mathematics education. In S. Lerman, (Ed.), Encyclopedia of mathematics education (pp. 579–582). Dordrecht: Springer. https://doi.org/10.1007/978-94-007-4978-8
  • Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference. Statistics Education Research Journal, 8(1), 82–105. https://iase-web.org/documents/SERJ/SERJ8(1)_Makar_Rubin.pdf
  • Pfannkuch, M., Ben-Zvi, D., & Budgett, S. (2018). Innovations in statistical modeling to connect data, chance and context. ZDM: Mathematics Education, 50(7), 1113–1123. https://doi.org/10.1007/s11858-018-0989-2
  • Pfannkuch, M., & Rubick, A. (2002). An exploration of students’ statistical thinking with given data. Statistics Education Research Journal, 1(2), 4–21. https://iase-web.org/documents/SERJ/SERJ1(2).pdf
  • Philip, T. M., Schuler-Brown, S., & Way, W. (2013). A framework for learning about big data with mobile technologies for democratic participation: Possibilities, limitations, and unanticipated obstacles. Technology, Knowledge and Learning, 18(3), 103–120. https://doi.org/10.1007/s10758-013-9202-4
  • Pratt, D., & Kazak, S. (2018). Research on uncertainty. In D. Ben-Zvi, K. Makar, & J. Garfield (Eds.), International handbook of research in statistics education (pp. 193–228). Springer.
  • Reading, C., & Shaughnessy, J. M. (2004). Reasoning about variation. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 201–226). Springer.
  • Ridgway, J. (2016). Implications of the data revolution for statistics education. International Statistical Review, 84(3), 528–549. https://doi.org/10.1111/insr.12110
  • Saxe, G. B. (1991). Culture and cognitive development: Studies in mathematical understanding. Erlbaum.
  • The Concord Consortium. (2014). Common online data analysis platform. @Concord, 18(1), 16. https://concord.org/newsletter/2014-spring/codap/
  • Tukey, J. W. (1977). Exploratory data analysis. Addison-Wesley.
  • Watson, J., & Donne, J. (2009). TinkerPlots as a research tool to explore student understanding. Technology Innovations in Statistics Education, 3(1). https://escholarship.org/uc/item/8dp5t34t
  • Wickham, H., Francois, R., Henry, L., & Müller, K. (2015). dplyr: A grammar of data manipulation. R package version 0.4, 3.
  • Wild, C. J., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 223–248. https://doi.org/10.1111/j.1751-5823.1999.tb00442.x
  • Wilkerson, M. H. & Polman, J. L. (2020). Situating data science: Exploring how relationships to data shape learning [Special Issue]. Journal of the Learning Sciences, 29(1), 1–10. doi:10.1080/10508406.2019.1705664
  • Wilkerson, M. H., Shareff, R. L., & Laina, V. (in press). Learning from “interpretations of innovation” in the co-design of digital tools.To appear in M.-C. Shanahan, B. Kim, K. Koh, A. P. Preciado-Babb, & M. A. Takeuchi (Eds.), The learning sciences in conversation: theories, methodologies, and boundary spaces. Routledge.
  • Wilkerson, M. H., & Laina, V. (2018). Middle school students’ reasoning about data and context through storytelling with repurposed local data. ZDM Mathematics Education, 50(7), 1223–1235. https://doi.org/10.1007/S11858-018-0974-9
  • Wilkerson, M. H., Lanouette, K., Shareff, R. L., Erickson, T., Bulalacao, N., Heller, J., St. Clair, N., Finzer, W., & Reichsman, F. (2018). Data moves: Restructuring data for inquiry in a simulation and data analysis environment. Poster to appear in Proceedings of the International Conference for the Learning Sciences (ICLS 2018). London, England: ISLS.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.