393
Views
13
CrossRef citations to date
0
Altmetric
Articles

Stable oxygen isotopes of dental biomineral: differentiation at the intra- and inter-tissue level of modern shark teeth

&
Pages 337-340 | Received 05 Jun 2013, Accepted 15 Dec 2013, Published online: 14 Feb 2014

REFERENCES

  • Andreev, P.S. & Cuny, G., 2012: New Triassic stem selachimorphs (Chondrichthyes, Elasmobranchii) and their bearing on the evolution of dental enameloid in Neoselachii. Journal of Vertebrate Paleontology32 (2), 255–266.
  • Cuny, G., 1998: Primitive Neoselachian sharks: a survey. Oryctos1, 3–21.
  • Cuny, G. & Risnes, S., 2005: The enameloid microstructure of the teeth of synechodontiform sharks (Chondrichthyes: Neoselachii). Palaeontological and Archeological Foundation; Vertebrate Palaeontology3 (2), 9–19.
  • Daclusi, G. & Kerebel, L.M., 1980: Ultrastructural study and comparative analysis of fluoride content of enameloid in sea-water and fresh-water sharks. Archives of Oral Biology25, 145–151.
  • Enax, J., Prymak, O., Raabe, D. & Epple, M., 2012: Structure, composition, and mechanical properties of shark teeth. Journal of Structural Biology178, 290–299.
  • Gillis, J.A. & Donoghue, P.C.J., 2007: The homology and phylogeny of chondrichthyan tooth enameloid. Journal of Morphology268, 33–49.
  • Grimes, V. & Pellegrini, M., 2013. A comparison of pretreatment methods for the analysis of phosphate oxygen isotope ratios in bioapatite. Rapid Communications in Mass Spectrometry27, 375–390.
  • Kesmez, M., Lyon, J., Cocke, D.L., Westgate, J., McWhinney, H., et al., 2004. Characterization of the evolutionary aspects of great white shark teeth by X-ray diffraction methods and other supporting techniques. Advances in X-Ray Analysis47, 327–337.
  • Kita, N.T., Ushikubo, T., Fu, B. & Valley, J.W., 2009: High precision SIMS oxygen isotope analysis and the effect of sample topography. Chemical Geology264, 43–57.
  • Klug, S., Tutken, T., Wings, O., Pfretzschner, H.-U. & Martin, T., 2010: A Late Jurassic freshwater shark assemblage (Chondrichthyes, Hybodontiformes) from the southern Junggar Basin, Xinjiang, Northwest China. Palaeobiodiversity and palaeoenvironments90, 241–257.
  • Kocsis, L., Vennemann, T.W., Hegner, E., Fontignie, D. & Tütken, T., 2009: Constraints on the paleoceanography and paleoclimate of the Miocene north Alpine Molasse, Vienna and Pannonian Basins: records of the O-, Sr-, and Nd-isotope composition of marine fish and mammal remains. Palaeogeography, Palaeoclimatology, Palaeoecology271, 117–129.
  • Kohn, J.M. & Cerling, E.T., 2002: Stable isotope compositions of biological apatite. In J.M.Kohn, J.Rakovan & J.M.Hughes (eds.): Reviews in Mineralogy and Geochemistry, 48, 455–488.
  • Kohn, M.J., Schoeninger, M.J. & Barker, W.W., 1999: Altered states: effects of diagenesis on fossil tooth chemistry. Geochimica Cosmochimica Acta63, 2737–2747.
  • Kolodny, Y., Luz, B. & Navon, O., 1983: Oxygen isotope variations in phosphate of biogenic apatites. I. Fish bone apatite—rechecking the rules of the game. Earth and Planetary Science Letters64, 398–404.
  • Lécuyer, Ch., Amiot, R., Touzeau, A. & Trotter, J., 2013: Calibration of the phosphate δ18O thermometer with carbonate-water oxygen isotope fractionation equations. Chemical Geology347, 217–226.
  • Lécuyer, C., Picard, S., Garcia, J.-P., Sheppard, S.M.F., Grandjean, P. & Dromart, G.2003. Thermal evolution of Tethyan surface waters during the Middle-Late Jurassic: evidence from δ18O values of marine fish teeth. Paleoceanography18 (3), 1076.
  • Miake, Y., Aoba, T., Moreno, E.C., Shimoda, S., Prostak, K. & Suga, S., 1991: Ultrastructural studies on crystal growth of enameloid minerals in elasmobranch and teleost fish. Calcified Tissue International48, 204–217.
  • O'Neil, J.R., Roe, L.J., Reinhard, E. & Blake, R.E., 1994: A rapid and precise method of oxygen isotope analysis of animal bone phosphate. Israel Journal of Earth Sciences43, 203.
  • Pucéat, E., Lécuyer, Ch., Sheppard, S.M.F., Dromart, G., Reboulet, S. & Grandjean, P., 2003: Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography18 (2), 1029: 7-1–7-12.
  • Pucéat, E., Joachimski, M.M., Bouilloux, A., Monna, F., Bonin, A., Montreuil, S., Moriniere, P., Henard, S., Mourin, J., Dera, G. & Quesne, D., 2010: Revised phosphate-water fractionation equation reassessing palaeotemperatures derived from biogenic apatite. Earth and Planetary Science Letters298, 135–142.
  • Risnes, S., 1990: Shark tooth morphogenesis. And SEM and EDX analysis of enameloid and dentin development in various shark species. Journal de Biologie Buccale18 (3), 237–248.
  • Trotter, J.A., Williams, I.S., Barnes, Ch.R., Lécuyer, Ch. & Nicoll, R.S., 2008: Did cooling oceans triger Ordovician biodiversification? Evidence from conodont thermometry. Science321, 550–554.
  • Vennemann, T.W. & Hegner, E., 1998: Oxygen, strontium, and neodymium isotope compositionof fossil shark teeth as a proxy for the palaeoceanography and palaeoclimatology of the Miocene northern Alpine Paratethys. Palaeogeography, Palaeoclimatology, Palaeoecology142, 107–121.
  • Vennemann, T.W., Hegner, E., Cliff, G. & Benz, G.W., 2001: Isotopic composition of recent shark teeth as a proxy for environmental conditions. Geochimica Cosmochimica Acta65, 1583–1599.
  • Weiner, S. & Dove, P.M., 2004: An Overview of Biomineralization Processes and the Problem of the Vital Effect. InP.M.Dove, J.J.De Yoreo, & S.Weiner (eds.): Biomineralisation. Reviews in Mineralogy and Geochemistry, 54, 1–29.
  • Wiedemann-Bidlack, F.B., Colman, A.S. & Fogel, M.L., 2008: Phosphate oxygen isotope analysis on micrtosamples of bioapatite: removal of organic contamination and minimization of sample size. Rapid Communications in Mass Spectrometry22, 1807–1816.
  • Whitehouse, M.J. & Nemchin, A., 2009: High precision, high accuracy measurement of oxygen isotopes in a large lunar zircon by SIMS. Chemical Geology261 (1-2), 31–41.
  • Žigaitė, Ž., Joachimski, M.M., Lehnert, O. & Brazauskas, A., 2010: δ18O composition of conodont apatite indicates climatic cooling during the middle Pridoli. Palaeogeography, Palaeoclimatology, Palaeoecology294, 242–247.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.