3
Views
3
CrossRef citations to date
0
Altmetric
Leading Article

Antibiotic Permeation Through the Bacterial Outer Membrane

Pages 275-279 | Published online: 14 Jul 2016

References

  • Nikaido H, Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol Rev 1985; 45: 1–32.
  • Lugtenberg B, van Alpen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other gram-negative bacteria. Biochim Biophys Acta 1983; 737: 51–115.
  • Benz R. Porins from bacterial and mitochondrial outer membranes. CRC Crit Rev Biochem 1985; 19: 145–190.
  • Hall MN, Silhavy TJ. The ompB locus and the regulation of the major outer membrane porin proteins of Escherichia coli K-12. J Mol Biol 1979; 146: 23–43.
  • Nakae T, Ishii J. Transmembrane permeability channels in vesicles reconstituted from Salmonella typhimurium. J Bacteriol 1978; 133: 1412–1418.
  • Sawai T, Hirano S, Yamaguchi A. Repression of porin synthesis by salicylate in Escherichia coli, Klebsiella pneumoniae, and Serrada marcescens. FEMS Microbiol Lett 1987; 40: 233–237.
  • Mitsuyama J, Hiruma R, Yamaguchi A, Sawai T. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane penetration of β-lactams. Antimicrob Agents Chemother 1987; 31: 379–384.
  • Yoshihara E, Nakae T. Identification of porins in the outer membrane of Pseudomonas aeruginosa that form small diffusion pores. J Biol Chem 1989; 264: 6297–6301.
  • Gotoh N, Wakebe H, Yoshihara E, Nakae T, Nishino T. Role of protein F in maintaining structural integrity of the Pseudomonas aeruginosa outer membrane. J Bacteriol 1989; 171: 983–990.
  • Vachon V, Lyew DJ, Coulton JW. Transmembrane permeability channele across the outer membrane of Haemophilus influenzae type b. J Bacteriol 1985; 162: 918–924.
  • Young JDE, Blake M, Mauro A, Cohn ZA. Properties of the major outer membrane porin from Neisseria gonorrhoeae incorporated into model lipid membranes. Proc Natl Acad Sci USA 1983; 80: 3831–3835.
  • Kobayashi Y, Akatsuka A, Nakae T. Electron microscopic visualization of the outer membrane permeability of Bacteroides fragilis. FEMS Microbiol Lett 1987; 48: 325–329.
  • Watanabe N, Nagasu T, Katsu K, Kitoh K. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother 1987; 31: 497–504.
  • Hancock REW, Carey AM. Protein D1: a glucose-inducible, pore-forming protein from the outer membrane of Pseudomonas aeruginosa. FEMS Microbiol Lett 1980; 8: 105–109.
  • Georgopapadakou NH. Penicillin-binding proteins. In: Peterson PK, Verhoef J, eds. Antimicrobial agents annual 3. Amsterdam: Elsevier Science Publishers, 1988: 409–431.
  • Yoshimura F, Nikaido H. Diffusion of β-lactam anti-biotics through the porin channels of Escherichia coli K-12. Antimicrob Agents Chemother 1985; 27: 84–92.
  • Yoshimura F, Nikaido H. Permeability of Pseudomonas aeruginosa outer membrane to hydrophilic solutes. J Bacteriol 1982; 152: 636–642.
  • Coulton JW, Mason P, Dorrance D. The permeability barrier of Haemophilus influenzae type b against β-lactam antibiotics. J Antimicrob Chemother 1983; 12: 435–449.
  • Curtis NAC, Eisenstadt RL, East SJ, Cornford RJ, Walker, LA, White AJ. Iron-regulated outer membrane proteins of Escherichia coli K-12 and mechanism of action of catechol-substituted cephalosporins. Antimicrob Agents Chemother 1988; 32: 1879–1886.
  • Trias J, Rosenberg EY, Nikaido. Specificity of the glucose channel formed by protein Dl of Pseudomonas aeruginosa. Biochim Biophys Acta 1988; 938: 493–496.
  • Sykes RB, Georgopapadakou NH. Bacterial resistance to β-lactam antibiotics: an overview. In: Salton MRJ, ed. β-Lactam antibiotics: mode of action, new developments and future prospects. New York: Academic Press, 1981: 199–214.
  • Waley SG. An explicit model for bacterial resistance: application to β-lactam antibiotics. Microbiol Sci 1987; 4: 143–146.
  • Nikaido H, Normark S. Sensitivity of Escherichia coli to various β-lactams is determined by the interplay of outer membrane permeability and degradation by periplasmic β-lactamases: a quantitative predictive treatment. Mol Microbiol 1987; 1: 29–36.
  • Mendelman PM, Chaffin DO, Stull TL, Rubens CE, Mack KD, Smith AL. Characterization of non-β-lactamase-mediated ampicillin resistance in Haemophilus influenzae. An timicrob Agents Chemother 1984; 26: 235–244.
  • Dougherty TJ, Koller AE, Tomasz A. Penicillin-binding proteins of penicillin-susceptible and intrinsically resistant Neisseria gonorrhoeae. Antimicrob Agents Chemother 1980; 19: 730–737.
  • Vu H, Nikaido H. Role of β-lactam hydrolysis in the mechanism of resistance of a β-lactamase-constitutive Enterobacter cloacae strain to expanded spectrum β-lactams. Antimi crob Agents Chemother 1985; 27: 393–398.
  • Then RL, Angehrn P. Trapping of nonhydrolyzable cephalosporins by cephalosporinases in Enterobacter cloacae and Pseudomonas aeruginosa as a possible resistance mechan ism. Antimicrob Agents Chemother 1982; 21: 711–717.
  • Zimmermann W, Rosselet A. Function of the outer membrane of Escherichia coli as a permeability barrier to betalactam antibiotics. Antimicrob Agents Chemother 1977; 12: 368–372.
  • Sawai T, Matsuba K, Yamagishi S. A method for measuring the outer membrane permeability of β-lactam antibiotics in gram-negative bacteria. J Antibiot 1977; 30: 1134–1136.
  • Mett H, Schacher B, Wegmann L. Ultrasonic disintegration of bacteria may lead to irrevesible inactivation of β-lactamase. J Antimicrob Chemother 1988; 22: 293–298.
  • Nikaido H, Rosenberg EY. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J Bacteriol 1983; 153: 241–252.
  • Nikaido H, Rosenberg EY, Foulds J. Porin channels in Escherichia coli: studies with β-lactams in intact cells. J Bacteriol 1983; 153: 232–240.
  • Nikaido H. Role of permeability barriers in resistance to β-lactam antibiotics. Pharmacol Ther 1985; 27: 197–231.
  • Hirai K, Aoyama H, Suzue S, Irikura T, Iyobe S, Mitsuhashi S. Isolation and characterization of norfloxacin-resistant mutants of Escherichia coli K12. Antimicrob Agents Chemother 1986; 30: 248–253.
  • Hirai K, Aoyama H, Irikura T, Iyobe S, Mitsuhashi S. Differences in susceptibility to quinolones of outer membrane mutants of Salmonella typhimurium and Escherichia coli K12. Antimicrob Agents Chemother 1986; 29: 535–538.
  • Chapman JS, Georgopapadakou NH. Routes of quinolone permeation in Escherichia coli. Antimicrob Agents Chemother 1988; 32: 438–442.
  • Hooper DC, Wolfson JS, Souza KS, Ng EY, McHugh GL, Schwartz MN. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resitance loci decreasing norfloxacin accumulation. Antimicrob Agents Chemother 1989; 33: 283–290.
  • Sato KC, Wolfson JS, Souza KS, Tung C, McHugh GL, Swartz MN. Genetic and biochemical characterization of norfloxacin resistance in Escherichia coli. Antimicrob Agents Chemother 1986; 29: 939–644.
  • Inoue Y, Sato K, Fujii T, Hirai K, Inoue M, Iyobe S, Mitsuhashi M. Some properties of subunits of DNA gyrase from Pseudomonas aeruginosa PAOl and its nalidixic acid resistant mutant. J Bacteriol 1987; 169: 2322–2325.
  • Lucain C, Regamey P, Bellido F, Pechere J-C. Resistnace emerging after pefloxacin therapy of experimental Enterobacter cloacae peritonitis. Antimicrob Agents Chemother 1989; 33: 937–943.
  • McMurry LM, Levy SB. Two transport systems for tetracycline in Escherichia coli: critical role for an initial uptake system insensitive to energy inhibitors. Antimicrob Agents Chemother 1978; 14: 201–209.
  • McMurry LM, Cullinane JC, Levy SB. Transport of the lipophilic analog minocycline differs from that of tetracycline in susceptible and resistant Escherichia coli strains. Antimicrob Agents Chemother 1982; 22: 791–799.
  • Levy SB. Resistance to tetracyclines. In: Bryan LE, ed. Antimicrobial drug resistance. Orlando: Academic Press, 1984: 192–234.
  • McMurry LM, Petrucci RE Jr, Levy SB. Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proc Natl Acad Sci USA 1980; 77: 3974–3977.
  • Schindler M, Osborn MJ. Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 1979; 18: 4425–4430.
  • Hancock REW. Alterations in outer membrane permeability. Ann Rev Microbiol 1984; 38:237–264.
  • Bryan LE, Kwan S. Roles of ribosomal binding, membrane potential, and electron transport in bacterial uptake of streptomycin and gentamycin. Antimicrob Agents Chemother 1983; 23: 835–845.
  • Bryan LE, Koward SK, van Den Eltzen HM. Mechanism of aminoglycoside antibiotic resistance in anaerobic bac teria: Clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother 1979; 15: 7–13.
  • Bryan LE. Aminoglycoside resistance. In: Bryan LE, ed. Antimicrobial drug resistance. Orlando: Academic Press, 1984: 241–247.
  • Bryan LE, O’Hara K, Wong S. Lipopolysaccharide changes in impermeability-type aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1984; 26: 250–255.
  • Nicas TI, Hancock REW. Outer membrane protein HI of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamycin. J Bacteriol 1980; 143: 872–878.
  • Rosenthal K, Storm DB. Disruption of the Escherichia coli outer membrane permeability barrier by immobilized polymyxin B. J Antibiot 1977; 30: 1087–1092.
  • Hancock REW, Wong PGW. Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane. Antimicrob Agents Chemother 1984; 26: 48–52.
  • Hammond SM, Claesson A, Jannson AM, Larsson LG, Pring BG, Town GM, Ekstrom B. A new class of synthetic antibacterials acting on polysaccharide biosynthesis. Nature 1987; 327: 730–732.
  • Goldman R, Kohlbrenner W, Lartey P, Pernet A. Antibacterial agents specifically inhibiting lipopolysaccharide synthesis. Nature 1987; 329: 162–164.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.