343
Views
0
CrossRef citations to date
0
Altmetric
Review

News on therapeutic management of MDR-tuberculosis: a literature review

ORCID Icon, , , , , & show all

References

  • Global tuberculosis report 2016. [cited 2017 Mar 8] Available from: http://apps.who.int/iris/bitstream/10665/250441/1/9789241565394-eng.pdf?ua=1
  • M’imunya JM, Kredo T, Volmink J. Patient education and counselling for promoting adherence to treatment for tuberculosis. Cochrane Database Syst Rev. 2012;5:CD006591.
  • Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Delivery Rev. 2016;102:55–72.10.1016/j.addr.2016.04.026
  • Getahun H, Gunneberg C, Granich R, Nunn P. HIV infection-associated tuberculosis: the epidemiology and the response. Clin Infect Dis Off Publ Infect Dis Soc Am. 2010;50(3):S201–7.
  • Brigden G, Nyang’wa B-T, du Cros P, Varaine F, Hughes J, Rich M, et al. Principles for designing future regimens for multidrug-resistant tuberculosis. Bull World Health Organ. 2014;92(1):68–74.10.2471/BLT.13.122028
  • WHO treatment guidelines for drug-resistant tuberculosis; 2016 update. October 2016 revision, WHO/HTM/TB/2016.04 in the place of reference 6. Available from: http://apps.who.int/iris/bitstream/10665/250125/1/9789241549639-eng.pdf?ua=1
  • Mdluli K, Ma Z. Mycobacterium tuberculosis DNA Gyrase as a target for drug discovery. Infect Disord Drug Targets. 2007;7(2):159–68.10.2174/187152607781001763
  • Ziganshina LE, Titarenko AF, Davies GR. Fluoroquinolones for treating tuberculosis (presumed drug-sensitive). Cochrane Database Syst Rev. 2013;6:CD004795.
  • Jabeen K, Shakoor S, Hasan R. Fluoroquinolone-resistant tuberculosis: implications in settings with weak healthcare systems. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2015;32:118–23.
  • Aung KJM, Van Deun A, Declercq E, Sarker MR, Das PK, Hossain MA, et al. Successful ‘9-month Bangladesh regimen’ for multidrug-resistant tuberculosis among over 500 consecutive patients. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2014;18(10):1180–7.
  • Chiang C-Y, Van Deun A, Rieder HL. Gatifloxacin for short, effective treatment of multidrug-resistant tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2016;20(9):1143–7.
  • Koh W-J, Lee SH, Kang YA, Lee C-H, Choi JC, Lee JH, et al. Comparison of levofloxacin versus moxifloxacin for multidrug-resistant tuberculosis. Am J Respir Crit Care Med. 2013;188(7):858–864.10.1164/rccm.201303-0604OC
  • Dawson R, Diacon AH, Everitt D, van Niekerk C, Donald PR, Burger DA, et al. Efficiency and safety of the combination of moxifloxacin, pretomanid (PA-824), and pyrazinamide during the first 8 weeks of antituberculosis treatment: a phase 2b, open-label, partly randomised trial in patients with drug-susceptible or drug-resistant pulmonary tuberculosis. The Lancet. 2015;385(9979):1738–47.10.1016/S0140-6736(14)62002-X
  • Ahmad Z, Minkowski A, Peloquin CA, Williams KN, Mdluli KE, Grosset JH, et al. Activity of the fluoroquinolone DC-159a in the initial and continuation phases of treatment of murine tuberculosis. Antimicrob Agents Chemother. 2011;55(4):1781–3.10.1128/AAC.01514-10
  • Swaminathan S, Sundaramurthi JC, Palaniappan AN, Narayanan S. Recent developments in genomics, bioinformatics and drug discovery to combat emerging drug-resistant tuberculosis. Tuberculosis. 2016;101:31–40.10.1016/j.tube.2016.08.002
  • Ginsburg AS, Grosset JH, Bishai WR. Fluoroquinolones, tuberculosis, and resistance. Lancet Infect Dis. 2003;3(7):432–442.10.1016/S1473-3099(03)00671-6
  • Wilson JW, Tsukayama DT. Extensively drug-resistant tuberculosis: principles of resistance, diagnosis, and management. Mayo Clin Proc. 2016;91(4):482–495.10.1016/j.mayocp.2016.01.014
  • Wilson JW, Tsukayama DT. The molecular genetics of fluoroquinolone resistance in mycobacterium tuberculosis. Microbiol Spectr. 2014;2(4):MGM2-0009-2013.
  • Shirude PS, Hameed S. Chapter twenty-one – nonfluoroquinolone-based inhibitors of mycobacterial type II topoisomerase as potential therapeutic agents for TB. In: Desai MC, editor. Annual reports in medicinal chemistry. Vol. 47, Burlington: Academic Press; 2012. p. 319–30.
  • Chopra S, Matsuyama K, Tran T, Malerich JP, Wan B, Franzblau SG, et al. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J Antimicrob Chemother. 2012;67(2):415–421.10.1093/jac/dkr449
  • Locher CP, Jones SM, Hanzelka BL, Perola E, Shoen CM, Cynamon MH, et al. A novel inhibitor of gyrase B is a potent drug candidate for treatment of tuberculosis and nontuberculosis mycobacterial infections. Antimicrob Agents Chemother. 2015;59(3):1455–65.10.1128/AAC.04347-14
  • Shirude PS, Madhavapeddi P, Tucker JA, Murugan K, Patil V, Basavarajappa H, et al. Aminopyrazinamides: novel and specific GyrB inhibitors that kill replicating and nonreplicating mycobacterium tuberculosis. ACS Chem Biol. 2013;8(3):519–23.10.1021/cb300510w
  • Schroeder EK, de Souza O., Santos DS, Blanchard JS, Basso LA. Drugs that inhibit mycolic acid biosynthesis in mycobacterium tuberculosis. Curr Pharm Biotechnol. 2002;3(3):197–225.10.2174/1389201023378328
  • Brossier F. Mécanismes d’action et de résistance de l’isoniazide, un antituberculeux de première ligne. J Anti-Infect. 2011;13(4):217–227.10.1016/j.antinf.2011.10.003
  • Katiyar SK, Bihari S, Prakash S, Mamtani M, Kulkarni H. A randomised controlled trial of high-dose isoniazid adjuvant therapy for multidrug-resistant tuberculosis. Int J Tuberc Lung Dis Off J Int Union Tuberc Lung Dis. 2008;12(2):139–45.
  • Caminero JA, Sotgiu G, Zumla A, Migliori GB. Best drug treatment for multidrug-resistant and extensively drug-resistant tuberculosis. Lancet Infect Dis. 2010;10(9):621–9.10.1016/S1473-3099(10)70139-0
  • Tomioka H, Tatano Y, Yasumoto K, Shimizu T. Recent advances in antituberculous drug development and novel drug targets. Expert Rev Respir Med. 2008;2(4):455–71.10.1586/17476348.2.4.455
  • Carroll MW, Jeon D, Mountz JM, Lee JD, Jeong YJ, Zia N, et al. Efficacy and safety of metronidazole for pulmonary multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2013;57(8):3903–9.10.1128/AAC.00753-13
  • Xavier AS, Lakshmanan M. Delamanid: A new armor in combating drug-resistant tuberculosis. J Pharmacol Pharmacother. 2014;5(3):222–4.10.4103/0976-500X.136121
  • Wong EB, Cohen KA, Bishai WR. Rising to the challenge: new therapies for tuberculosis. Trends Microbiol. 2013;21(9):493–501.10.1016/j.tim.2013.05.002
  • Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med. 2006;3(11):e466.10.1371/journal.pmed.0030466
  • Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, et al. Delamanid for multidrug-resistant pulmonary tuberculosis. New Engl J Med. 2012;366(23):2151–2160.10.1056/NEJMoa1112433
  • Blair HA, Scott LJ. Delamanid: a review of its use in patients with multidrug-resistant tuberculosis. Drugs. 2015;75(1):91–100.10.1007/s40265-014-0331-4
  • Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, et al. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J. 2013;41(6):1393–400.10.1183/09031936.00125812
  • Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. New Engl J Med. 2015;373(20):1986–8.10.1056/NEJMc1505196
  • Diacon AH, Dawson R, Hanekom M, Narunsky K, Maritz SJ, Venter A, et al. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother. 2010;54(8):3402–7.10.1128/AAC.01354-09
  • Diacon AH, Dawson R, du Bois J, Narunsky K, Venter A, Donald PR, et al. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother. 2012;56(6):3027–31.10.1128/AAC.06125-11
  • Tasneen R, Williams K, Amoabeng O, Minkowski A, Mdluli KE, Upton AM, et al. Contribution of the nitroimidazoles PA-824 and TBA-354 to the activity of novel regimens in murine models of tuberculosis. Antimicrob Agents Chemother. 2015;59(1):129–35.10.1128/AAC.03822-14
  • New TB Drugs – TBA 354. 2016. [cited 2017 Mar 8] Available from: http://www.newtbdrugs.org/pipeline/compound/tba-354
  • Sacksteder KA, Protopopova M, Barry CE, Andries K, Nacy CA. Discovery and development of SQ109: a new antitubercular drug with a novel mechanism of action. Future Microbiol. 2012;7(7):823–37.10.2217/fmb.12.56
  • Nikonenko BV, Protopopova M, Samala R, Einck L, Nacy CA. Drug therapy of experimental tuberculosis (TB): improved outcome by combining SQ109, a new diamine antibiotic, with existing TB drugs. Antimicrob Agents Chemother. 2007;51(4):1563–5.10.1128/AAC.01326-06
  • Heinrich N, Dawson R, du Bois J, Narunsky K, Horwith G, Phipps AJ, et al. Early phase evaluation of SQ109 alone and in combination with rifampicin in pulmonary TB patients. J Antimicrob Chemother. 2015;70(5):1558–66.10.1093/jac/dku553
  • Bogatcheva E, Hanrahan C, Nikonenko B, et al. Identification of SQ609 as a lead compound from a library of dipiperidines. Bioorg Med Chem Lett. 2011;21(18):5353–7.10.1016/j.bmcl.2011.07.015
  • Zhang D, Wang Y, Lu J, Pang Y. In vitro activity of β-lactams in combination with β-lactamase inhibitors against multidrug-resistant mycobacterium tuberculosis isolates. Antimicrob Agents Chemother. 2015;60(1):393–9.
  • Dhar N, Dubée V, Ballell L, Cuinet G, Hugonnet J-E, Signorino-Gelo F, et al. Rapid cytolysis of mycobacterium tuberculosis by faropenem, an orally bioavailable β-Lactam antibiotic. Antimicrob Agents Chemother. 2014;59(2):1308–19.
  • Sotgiu G, D’Ambrosio L, Centis R, Tiberi S, Esposito S, Dore S, et al. Carbapenems to treat multidrug and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2016;17(3):373.10.3390/ijms17030373
  • Makarov V, Manina G, Mikusova K, Mollmann U, Ryabova O, Saint-Joanis B, et al. Benzothiazinones kill mycobacterium tuberculosis by blocking arabinan synthesis. Science. 2009;324(5928):801–4.10.1126/science.1171583
  • Lechartier B, Hartkoorn RC, Cole ST. In vitro combination studies of benzothiazinone lead compound BTZ043 against mycobacterium tuberculosis. Antimicrob Agents Chemother. 2012;56(11):5790–5793.10.1128/AAC.01476-12
  • New TB drugs – PBTZ 169 [cited 2017 Mar 8] Available from: http://www.newtbdrugs.org/pipeline/compound/pbtz-169
  • Makarov V, Lechartier B, Zhang M, Neres J, van der Sar AM, Raadsen SA, et al. Towards a new combination therapy for tuberculosis with next generation benzothiazinones. EMBO Mol Med. 2014;6(3):372–83.10.1002/emmm.201303575
  • Wang F, Sambandan D, Halder R, Wang J, Batt SM, Weinrick B, et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Nat Acad Sci USA. 2013;110(27):E2510–7.10.1073/pnas.1309171110
  • Ishizaki Y, Hayashi C, Inoue K, Igarashi M, Takahashi Y, Pujari V, et al. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J Biol Chem. 2013;288(42):30309–19.10.1074/jbc.M113.492173
  • Chetty S, Ramesh M, Singh-Pillay A, Soliman MES. Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett. 2017;27(3):370–86.10.1016/j.bmcl.2016.11.084
  • Sloan DJ, Lewis JM. Management of multidrug-resistant TB: novel treatments and their expansion to low resource settings. Trans R Soc Trop Med Hyg. 2016;110(3):163–72.10.1093/trstmh/trv107
  • Alcalá L, Ruiz-Serrano MJ, Turégano CP-F, de Viedma DG, Díaz-Infantes M, Marín-Arriaza M, et al. In vitro activities of linezolid against clinical isolates of mycobacterium tuberculosis that are susceptible or resistant to first-line antituberculous drugs. Antimicrob Agents Chemother. 2003;47(1):416–417.10.1128/AAC.47.1.416-417.2003
  • Sotgiu G, Centis R, D’Ambrosio L, Alffenaar J-WC, Anger HA, Caminero JA, et al. Efficacy, safety and tolerability of linezolid containing regimens in treating MDR-TB and XDR-TB: systematic review and meta-analysis. Eur Respir J. 2012;40(6):1430–42.10.1183/09031936.00022912
  • Singla R, Caminero JA, Jaiswal A, Singla N, Gupta S, Bali RK, et al. Linezolid: an effective, safe and cheap drug for patients failing multidrug-resistant tuberculosis treatment in India. Eur Respir J. 2012;39(4):956–62.10.1183/09031936.00076811
  • Zhang L, Pang Y, Yu X, Wang Y, Gao M, Huang H, et al. Linezolid in the treatment of extensively drug-resistant tuberculosis. Infection. 2014;42(4):705–11.10.1007/s15010-014-0632-2
  • Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012;367(16):1508–18.10.1056/NEJMoa1201964
  • Koh W-J, Kang YR, Jeon K, Kwon OJ, Lyu J, Kim WS, et al. Daily 300 mg dose of linezolid for multidrug-resistant and extensively drug-resistant tuberculosis: updated analysis of 51 patients. J Antimicrob Chemother. 2012;67(6):1503–7.10.1093/jac/dks078
  • De Lorenzo S, Alffenaar JW, Sotgiu G, Centis R, D’Ambrosio L, Tiberi S, et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013;41(6):1386–92.10.1183/09031936.00124312
  • Williams KN, Stover CK, Zhu T, Tasneen R, Tyagi S, Grosset JH, et al. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob Agents Chemother. 2009;53(4):1314–9.10.1128/AAC.01182-08
  • Williams KN, Brickner SJ, Stover CK, Zhu T, Ogden A, Tasneen R, et al. Addition of PNU-100480 to first-line drugs shortens the time needed to cure murine tuberculosis. Am J Respir Crit Care Med. 2009;180(4):371–6.10.1164/rccm.200904-0611OC
  • Balasubramanian V, Solapure S, Iyer H, Ghosh A, Sharma S, Kaur P, et al. Bactericidal activity and mechanism of action of AZD5847, a novel oxazolidinone for treatment of tuberculosis. Antimicrob Agents Chemother. 2014;58(1):495–502.10.1128/AAC.01903-13
  • New TB drugs – AZD5847. 2016. [cited 2017 Mar 8]. Available from: http://www.newtbdrugs.org/pipeline/compound/azd5847
  • Andries K, Verhasselt P, Guillemont J, Göhlmann HWH, Neefs J-M, Winkler H, et al. A diarylquinoline drug active on the ATP synthase of mycobacterium tuberculosis. Science. 2005;307(5707):223–7.10.1126/science.1106753
  • Koul A, Dendouga N, Vergauwen K, Molenberghs B, Vranckx L, Willebrords R, et al. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat Chem Biol. 2007;3(6):323–4.10.1038/nchembio884
  • Koul A, Vranckx L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J Biol Chem. 2008;283(37):25273–25280.10.1074/jbc.M803899200
  • Kakkar AK, Dahiya N. Bedaquiline for the treatment of resistant tuberculosis: Promises and pitfalls. Tuberculosis. 2014;94(4):357–62.10.1016/j.tube.2014.04.001
  • Field SK. Bedaquiline for the treatment of multidrug-resistant tuberculosis: great promise or disappointment? Ther Adv Chronic Dis. 2015;6(4):170–84.10.1177/2040622315582325
  • Leibert E, Danckers M, Rom WN. New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline. Ther Clin Risk Manag. 2014;10:597–602.10.2147/TCRM
  • Diacon AH, Pym A, Grobusch M, Patientia R, Rustomjee R, Page-Shipp L, et al. The diarylquinoline TMC207 for multidrug-resistant tuberculosis. N Engl J Med. 2009;360(23):2397–405.10.1056/NEJMoa0808427
  • Diacon AH, Pym A, Grobusch MP, et al. Multidrug-resistant tuberculosis and culture conversion with bedaquiline. N Engl J Med. 2014;371(8):723–32.10.1056/NEJMoa1313865
  • Guglielmetti L, Le Du D, Jachym M, Henry B, Martin D, Caumes E, et al. Compassionate use of bedaquiline for the treatment of multidrug-resistant and extensively drug-resistant tuberculosis: interim analysis of a French cohort. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60(2):188–94.10.1093/cid/ciu786
  • Chahine EB, Karaoui LR, Mansour H. Bedaquiline: a novel diarylquinoline for multidrug-resistant tuberculosis. Ann Pharmacother. 2014;48(1):107–15.10.1177/1060028013504087
  • Winter H, Egizi E, Murray S, Erondu N, Ginsberg A, Rouse DJ, et al. Evaluation of the pharmacokinetic interaction between repeated doses of rifapentine or rifampin and a single dose of bedaquiline in healthy adult subjects. Antimicrob Agents Chemother. 2015;59(2):1219–24.10.1128/AAC.04171-14
  • Wolfson LJ, Walker A, Hettle R, Lu X, Kambili C, Murungi A, et al. Cost-effectiveness of adding bedaquiline to drug regimens for the treatment of multidrug-resistant tuberculosis in the UK. PloS One. 2015;10(3):e0120763.10.1371/journal.pone.0120763
  • Xu H-B, Jiang R-H, Xiao H-P. Clofazimine in the treatment of multidrug-resistant tuberculosis. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2012;18(11):1104–10.
  • Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, et al. Bactericidal activity of pyrazinamide and clofazimine alone and in combinations with pretomanid and bedaquiline. Am J Respir Crit Care Med. 2015;191(8):943–53.10.1164/rccm.201410-1801OC
  • Pule CM, Sampson SL, Warren RM, Black PA, van Helden PD, Victor TC, et al. Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. J Antimicrob Chemother. 2016;71(1):17–26.10.1093/jac/dkv316
  • Pethe K, Bifani P, Jang J, Kang S, Park S, Ahn S, et al. Discovery of Q203, a potent clinical candidate for the treatment of tuberculosis. Nat Med. 2013;19(9):1157–60.10.1038/nm.3262
  • Rayasam GV, Balganesh TS. Exploring the potential of adjunct therapy in tuberculosis. Trends Pharmacol Sci. 2015;36(8):506–13.10.1016/j.tips.2015.05.005
  • Ndlovu H, Marakalala MJ. Granulomas and inflammation: host-directed therapies for tuberculosis. Front Immunol. 2016;7:434.
  • Mayer-Barber KD, Andrade BB, Oland SD, Amaral EP, Barber DL, Gonzales J, et al. Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk. Nature. 2014;511(7507):99–103.10.1038/nature13489
  • Vilaplana C, Marzo E, Tapia G, Diaz J, Garcia V, Cardona P-J. Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis. J Infect Dis. 2013;208(2):199–202.10.1093/infdis/jit152
  • Dutta NK, Bruiners N, Pinn ML, Zimmerman MD, Prideaux B, Dartois V, et al. Statin adjunctive therapy shortens the duration of TB treatment in mice. J Antimicrob Chemother. 2016;71(6):1570–7.10.1093/jac/dkw014
  • Restrepo BI. Metformin: candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients. Tuberculosis. 2016;101:S69–S72.10.1016/j.tube.2016.09.008
  • Stanley SA, Barczak AK, Silvis MR, Luo SS, Sogi K, Vokes M, et al. Identification of host-targeted small molecules that restrict intracellular mycobacterium tuberculosis growth. PLoS Pathog. 2014;10(2):e1003946.10.1371/journal.ppat.1003946
  • Schiebler M, Brown K, Hegyi K, Newton SM, Renna M, Hepburn L, et al. Functional drug screening reveals anticonvulsants as enhancers of mTOR-independent autophagic killing of Mycobacterium tuberculosis through inositol depletion. EMBO Mol Med. 2015;7(2):127–39.10.15252/emmm.201404137
  • Gupta S, Tyagi S, Bishai WR. Verapamil increases the bactericidal activity of bedaquiline against mycobacterium tuberculosis in a mouse model. Antimicrob Agents Chemother. 2015;59(1):673–6.10.1128/AAC.04019-14
  • Migliori GB, Pontali E, Sotgiu G, Centis R, D’Ambrosio L, Tiberi S, et al. Combined use of delamanid and bedaquiline to treat multidrug-resistant and extensively drug-resistant tuberculosis: a systematic review. Int J Mol Sci. 2017;18(2):341.10.3390/ijms18020341
  • Working group on new TB drugs. 2016. [cited 2017 Mar 8]. Available from: http://www.newtbdrugs.org
  • Clinical trial progress report resist-TB. 2017. [cited 2017 Mar 8]. Available from: http://www.resisttb.org/?page_id=1602
  • Sagwa EL, Mantel-Teeuwisse AK, Ruswa NC. Occurrence and clinical management of moderate-to-severe adverse events during drug-resistant tuberculosis treatment: a retrospective cohort study. J Pharm Policy Pract. 2014;7(1):14.10.1186/2052-3211-7-14

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.