241
Views
1
CrossRef citations to date
0
Altmetric
Antimicrobial Original Research Paper

Prediction of the effect of voriconazole on the pharmacokinetics of non-steroidal anti-inflammatory drugs

, , , , &
Pages 240-246 | Received 03 Jul 2017, Accepted 10 Jul 2018, Published online: 30 Oct 2018

References

  • Davies DNM, Skjodt NM. Choosing the right nonsteroidal anti-inflammatory drug for the right patient: a pharmacokinetic approach. Clin Pharmacokinet. 2000;38(5):377–92.
  • Blanco G, Martínez C, Ladero JM, Garcia-Martin E, Taxonera C, Gamito FG, et al. Interaction of CYP2C8 and CYP2C9 genotypes modifies the risk for nonsteroidal anti-inflammatory drugs-related acute gastrointestinal bleeding. Pharmacogenet Genom. 2008;18(1):37–43.
  • Theuretzbacher U, Ihle F, Derendorf H. Pharmacokinetic/pharmacodynamic profile of voriconazole. Clin Pharmacokinet. 2006;45(7):649–63.
  • Kadam RS, Anker JNVD. Pediatric clinical pharmacology of voriconazole: role of pharmacokinetic/pharmacodynamic modeling in pharmacotherapy. Clin Pharmacokinet. 2016(9):1–13.
  • Lamoth F, Alexander BD. Comparing Etest and broth microdilution for antifungal susceptibility testing of the most-relevant pathogenic molds. J Clin Microbiol. 2015;53(10):3176–81.
  • Purkins L, Wood N, Ghahramani P, Love ER, Eve MD, Fielding A. Coadministration of voriconazole and phenytoin: pharmacokinetic interaction, safety, and toleration. Br J Clin Pharmacol. 2003;56(Suppl 1):37–44.
  • Shi J, Fraczkiewicz G, Williams W, Yeleswaram S. Predicting drug-drug interactions involving multiple mechanisms using physiologically based pharmacokinetic modeling: a case study with ruxolitinib. Clin Pharmacol Ther. 2015;97(2):177–85.
  • Frechen S, Junge L, Saari TI, Suleiman AA, Rokitta D, Neuvonen PJ, et al. A semiphysiological population pharmacokinetic model for dynamic inhibition of liver and gut wall cytochrome P450 3A by voriconazole. Clin Pharmacokinet. 2013;52(9):763–81.
  • Damle B, Varma MV, Wood N. Pharmacokinetics of voriconazole administered concomitantly with fluconazole and population-based simulation for sequential use. Antimicrob Agents Chemother. 2011;55(11):5172–7.
  • Murayama N, Imai NT, Shimizu M, Yamazaki H. Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol. 2007;73(12):2020–6.
  • Hyland R, Jones BC, Smith DA. Identification of the cytochrome P450 enzymes involved in the N-oxidation of voriconazole. Drug Metab Dispos. 2003;31(5):540–7.
  • Purkins L, Wood N, Greenhalgh K, Allen MJ, Oliver SD. Voriconazole, a novel wide-spectrum triazole: oral pharmacokinetics and safety. Br J Clin Pharmacol. 2003;56(s1):10–6.
  • Sun F, Lee L, Zhang Z, Wang X, Yu Q, Duan X, Chan, E. Preclinical pharmacokinetic studies of 3-deazaneplanocin A, a potent epigenetic anticancer agent, and its human pharmacokinetic prediction using GastroPlus™. Eur J Pharm Sci. 2015;77(3):197–203.
  • Guofu L, Kun W, Rui C, Haoru Z, Jin Y, Qingshan Z. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling. Acta Pharmacol Sin. 2012;33(11):1359–71.
  • Cristofoletti R, Dressman JB. Use of physiologically based pharmacokinetic models coupled with pharmacodynamic models to assess the clinical relevance of current bioequivalence criteria for generic drug products containing ibuprofen. J Pharm Sci. 2014;103(10):3263–75.
  • Poulin P, Kenny JR, Hop CE, Haddad S. In vitro-in vivo extrapolation of clearance: modeling hepatic metabolic clearance of highly bound drugs and comparative assessment with existing calculation methods. J Pharm Sci. 2012;101(2):838–51.
  • David D, Carl R, Erik S, Hans L. Direct in vivo human intestinal permeability (Peff) determined with different clinical perfusion and intubation methods. J Pharm Sci. 2015;104(9):2702–26.
  • Babu E, Takeda M, Narikawa S, Kobayashi Y, Enomoto A, Tojo A, et al. Role of human organic anion transporter 4 in the transport of ochratoxin A. Biochim Biophys Acta. 2002;1590(1–3):64–75.
  • Brenner SS, Herrlinger C, Dilger K, Mürdter TE, Hofmann U, Marx C, et al. Influence of age and cytochrome P450 2C9 genotype on the steady-state disposition of diclofenac and celecoxib. Clin Pharmacokinet. 2003;42(3):283–92.
  • Chang SY, Li W, Traeger SC, Wang B, Cui D, Zhang H, et al. Confirmation that cytochrome P450 2C8 (CYP2C8) plays a minor role in (S)-(+)- and (R)-(–)-ibuprofen hydroxylation in vitro. Drug Metab Dispos. 2008;36(12):2513–22.
  • Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K. CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenet Genom. 2000;10(2):95–104.
  • Tang C, Shou M, Rushmore TH, Mei Q, Sandhu P, Woolf EJ, et al. In-vitro metabolism of celecoxib, a cyclooxygenase-2 inhibitor, by allelic variant forms of human liver microsomal cytochrome P450 2C9: correlation with CYP2C9 genotype and in-vivo pharmacokinetics. Pharmacogenetics. 2001;11(3):223–35.
  • Yali S, Feng N, Mei L, Maozhi L, Ying W, Zhihui C, et al. Pharmacokinetic properties of intravenous ibuprofen in healthy Chinese volunteers. Clin Drug Investig, 2016;36(12):1051–8.
  • Crevoisier C, Heizmann P, Forgo I, Dubach UC. Plasma tenoxicam concentrations after single and multiple oral doses. Eur J Drug Metab Pharmacokinet. 1989;14(1):23–7.
  • Rasetti-Escargueil C, Grangé V. Pharmacokinetic profiles of two tablet formulations of piroxicam. Int J Pharm. 2005;295(1–2):129–34.
  • Paulson SK, Vaughn MB, Jessen SM, Lawal Y, Gresk CJ, Yan B, et al. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther. 2001;297(2):638–45.
  • Hynninen VV, Olkkola KT, Leino K, Lundgren S, Neuvonen PJ, Rane A, et al. Effect of voriconazole on the pharmacokinetics of diclofenac. Fundam Clin Pharmacol. 2007;21(6):651–6.
  • Jeong S, Nguyen PD, Desta Z. Comprehensive in vitro analysis of voriconazole inhibition of eight cytochrome P450 (CYP) enzymes: major effect on CYPs 2B6, 2C9,2C19 and 3A. Antimicrob Agents Chemother. 2009;53(2):541–51.
  • Hynninen VV, Olkkola KT, Leino K, Lundgren S, Neuvonen PJ, Rane A, et al. Effects of the Antifungals Voriconazole and Fluconazole on the Pharmacokinetics of S-(+)- and R-(–)-Ibuprofen. Antimicrob Agents Chemother. 2006;50(6):1967–72.
  • He SM, Zhou ZW, Li XT, Zhou SF. Clinical drugs undergoing polymorphic metabolism by human cytochrome P450 2C9 and the implication in drug development. Curr Med Chem. 2011;18(5):667–713.
  • Wyatt JE, Pettit WL, Harirforoosh S. Pharmacogenetics of nonsteroidal anti-inflammatory drugs. Pharmacogenomics J. 2012;12(6):462–7.
  • Kirchheiner J, Meineke I, Freytag G, Meisel C, Roots I, Brockmöller J. Enantiospecific effects of cytochrome P450 2C9 amino acid variants on ibuprofen pharmacokinetics and on the inhibition of cyclooxygenases 1 and 2. Clin Pharmacol Ther. 2002;72(1):62–75.
  • Zullino DF, Khazaal Y. Increased risk of gastrointestinal adverse effects under SSRI/NSAID combination may be due to pharmacokinetic interactions. Br J Clin Pharmacol. 2005;59(1):118.
  • Kirchheiner J, Brockmöller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther. 2005;77(1):1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.