151
Views
7
CrossRef citations to date
0
Altmetric
Antimicrobial Original Research Paper

Dissemination of VIM-producing Pseudomonas aeruginosa associated with high-risk clone ST654 in a tertiary and quaternary hospital in Makkah, Saudi Arabia

ORCID Icon &
Pages 12-20 | Received 28 Feb 2020, Accepted 17 Jun 2020, Published online: 30 Jun 2020

References

  • Maechler F, Pena Diaz LA, Schroder C, Geffers C, Behnke M, Gastmeier P. Prevalence of carbapenem-resistant organisms and other Gram-negative MDRO in German ICUs: first results from the national nosocomial infection surveillance system (KISS). Infection. 2015;43(2):163–8.
  • Meletis G, Exindari M, Vavatsi N, Sofianou D, Diza E. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa. Hippokratia. 2012;16(4):303–7.
  • Reno J, Schenck C, Scott J, Clark LA, Wang YFW, Ray S, Vagnone PS, Jacob JT. Querying automated antibiotic susceptibility testing instruments: a novel population-based active surveillance method for multidrug-resistant gram-negative bacilli. Infect Control Hosp Epidemiol. 2014;35(4):336–41.
  • Blanc DS, Francioli P, Zanetti G. Molecular epidemiology of Pseudomonas aeruginosa in the intensive care units - A Review. Open Microbiol J. 2007;1:8–11.
  • Morita Y, Tomida J, Kawamura Y. Efflux-mediated fluoroquinolone resistance in the multidrug-resistant Pseudomonas aeruginosa clinical isolate PA7: identification of a novel MexS variant involved in upregulation of the mexEF-oprN multidrug efflux operon. Front Microbiol. 2015;6(:8
  • Papagiannitsis CC, Medvecky M, Chudejova K, Skalova A, Rotova V, Spanelova P, Jakubu V, Zemlickova H, Hrabak J. Molecular characterization of carbapenemase-producing Pseudomonas aeruginosa of Czech origin and evidence for clonal spread of extensively resistant sequence type 357 expressing IMP-7 Metallo-beta-Lactamase. Antimicrob Agents Chemother. 2017;61(12):e01811.
  • Viedma E, Juan C, Acosta J, Zamorano L, Otero JR, Sanz F, Chaves F, Oliver A. Nosocomial spread of colistin-only-sensitive sequence type 235 Pseudomonas aeruginosa isolates producing the extended-spectrum beta-lactamases GES-1 and GES-5 in Spain. Antimicrob Agents Chemother. 2009;53(11):4930–3.
  • Sevillano E, Gallego L, Garcia-Lobo JM. First detection of the OXA-40 carbapenemase in P. aeruginosa isolates, located on a plasmid also found in A. baumannii. Pathol Biol. 2009;57(6):493–5.
  • Hu YY, Gu DX, Cai JC, Zhou HW, Zhang R. Emergence of KPC-2-producing Pseudomonas aeruginosa sequence type 463 isolates in Hangzhou, China. Antimicrob Agents Chemother. 2015;59(5):2914–7.
  • Wright LL, Turton JF, Livermore DM, Hopkins KL, Woodford N. Dominance of international 'high-risk clones' among metallo-β-lactamase-producing Pseudomonas aeruginosa in the UK. J Antimicrob Chemother. 2015;70(1):103–10.
  • Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the epidemiology of multi-drug resistant Gram-negative bacilli in the Middle East using a one health approach. Front Microbiol. 2019;10:1941.
  • Babay HA. Antimicrobial resistance among clinical isolates of Pseudomonas aeruginosa from patients in a teaching hospital, Riyadh, Saudi Arabia, 2001–2005. Jpn J Infect Dis. 2007;60(2–3):123–5.
  • Asghar A. Antimicrobial susceptibility and metallo-β-lactamase production among Pseudomonas aeruginosa isolated from Makkah Hospitals. Pak J Med Sci. 2012;28(5):781–6.
  • Al-Agamy MH, Shibl AM, Tawfik AF, Elkhizzi NA, Livermore DM. Extended-spectrum and metallo-beta-lactamases among ceftazidime-resistant Pseudomonas aeruginosa in Riyadh, Saudi Arabia. J Chemother. 2012;24(2):97–100.
  • Al-Agamy MH, Jeannot K, El-Mahdy TS, Samaha HA, Shibl AM, Plésiat P, Courvalin P. Diversity of molecular mechanisms conferring carbapenem resistance to Pseudomonas aeruginosa isolates from Saudi Arabia. Can J Infect Dis Med Microbiol. 2016;2016(2016):4379686.
  • Memish ZA, Assiri A, Almasri M, Roshdy H, Hathout H, Kaase M, Gatermann SG, Yezli S. Molecular characterization of carbapenemase production among gram-negative bacteria in saudi arabia. Microb Drug Resist. 2015;21(3):307–14.
  • Zowawi HM, Syrmis MW, Kidd TJ, Balkhy HH, Walsh TR, Al Johani SM, Al Jindan RY, Alfaresi M, Ibrahim E, Al-Jardani A, et al. Identification of carbapenem-resistant Pseudomonas aeruginosa in selected hospitals of the Gulf Cooperation Council States: dominance of high-risk clones in the region. J Med Microbiol. 2018;67(6):846–53.
  • Al-Zahrani IA, Azhar EI, Jiman-Fatani AA, Siddig LA, Yasir M, Al-Ghamdi AK, Harwood CR. Impact of mass migrations on the clonal variation of clinical Staphylococcus aureus strains isolated from the Western region of Saudi Arabia. J Infect Public Health. 2019;12(3):317–22.
  • EUCAST (The European Committee on Antimicrobial Susceptibility Testing). Breakpoint tables for interpretation of MICs and zone diameters. version 8.0, 2018; 2018.
  • Zarakolu P, Eser OK, Aladag E, Al-Zahrani IA, Day KM, Atmaca O, Boral B, Cakir B, Perry JD, Akova M, et al. Epidemiology of carbapenem-resistant Klebsiella pneumoniae colonization: a surveillance study at a Turkish university hospital from 2009 to 2013. Diagn Microbiol Infect Dis. 2016;85(4):466–70.
  • Curran B, Jonas D, Grundmann H, Pitt T, Dowson CG. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol. 2004;42(12):5644–9.
  • Breurec S, Raymond J, Thiberge J-M, Hem S, Monchy D, Seck A, Dehoux P, Garin B, Dauga C. Impact of human migrations on diversity of Helicobacter pylori in Cambodia and New Caledonia. Helicobacter. 2013;18(4):249–61.
  • Comas I, Hailu E, Kiros T, Bekele S, Mekonnen W, Gumi B, Tschopp R, Ameni G, Hewinson RG, Robertson BD, et al. Population genomics of Mycobacterium tuberculosis in Ethiopia contradicts the virgin soil hypothesis for human Tuberculosis in Sub-Saharan Africa. Curr Biol. 2015;25(24):3260–6.
  • Frost I, Van Boeckel TP, Pires J, Craig J, Laxminarayan R. Global geographic trends in antimicrobial resistance: The role of international travel. J Travel Med. 2019;26(8):taz036.
  • Jones RN. Microbial etiologies of hospital-acquired bacterial pneumonia and ventilator-associated bacterial pneumonia. Clin Infect Dis. 2010;51(Suppl 1):S81–S7.
  • El-Saed A, Balkhy HH, Al-Dorzi HM, Khan R, Rishu AH, Arabi YM. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. Int J Infect Dis. 2013;17(9):e696–701–e701.
  • Lee MS, Walker V, Chen LF, Sexton DJ, Anderson DJ. The epidemiology of ventilator-associated pneumonia in a network of community hospitals: a prospective multicenter study. Infect Control Hosp Epidemiol. 2013;34(7):657–62.
  • Khan MA, Faiz A. Antimicrobial resistance patterns of Pseudomonas aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med. 2016;36(1):23–8.
  • Samad A, Ahmed T, Rahim A, Khalil A, Ali I. Antimicrobial susceptibility patterns of clinical isolates of Pseudomonas aeruginosa isolated from patients of respiratory tract infections in a Tertiary Care Hospital, Peshawar. Pak J Med Sci. 2017;33(3):670–4.
  • Al-Agamy MH, Shibl AM, Tawfik AF, Radwan HH. High prevalence of metallo-beta-lactamase-producing Pseudomonas aeruginosa from Saudi Arabia. J Chemother. 2009;21(4):461–2.
  • Zafer MM, Al-Agamy MH, El-Mahallawy HA, Amin MA, El Din Ashour S. El Din Ashour S. Dissemination of VIM-2 producing Pseudomonas aeruginosa ST233 at tertiary care hospitals in Egypt. BMC Infect Dis. 2015;15(:122
  • Zhao WH, Hu ZQ. IMP-type metallo-β-lactamases in Gram-negative bacilli: distribution, phylogeny, and association with integrons . Crit Rev Microbiol. 2011;37(3):214–26.
  • Cornaglia G, Giamarellou H, Rossolini GM. Metallo-beta-lactamases: a last frontier for beta-lactams? Lancet Infect Dis. 2011;11(5):381–93.
  • Stewart NK, Smith CA, Frase H, Black DJ, Vakulenko SB. Kinetic and structural requirements for carbapenemase activity in GES-type β-lactamases. Biochemistry. 2015;54(2):588–97.
  • Naas T, Dortet L, Iorga BI. Structural and functional aspects of class A carbapenemases. Curr Drug Targets. 2016;17(9):1006–28.
  • Hishinuma T, Tada T, Kuwahara-Arai K, Yamamoto N, Shimojima M, Kirikae T. Spread of GES-5 carbapenemase-producing Pseudomonas aeruginosa clinical isolates in Japan due to clonal expansion of ST235. PLoS One. 2018;13(11):e0207134.
  • Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011;2:65.
  • Quale J, Bratu S, Gupta J, Landman D. Interplay of efflux system, ampC, and oprD expression in carbapenem resistance of Pseudomonas aeruginosa clinical isolates. Antimicrob Agents Chemother. 2006;50(5):1633–41.
  • Singh A, Goering RV, Simjee S, Foley SL, Zervos MJ. Application of molecular techniques to the study of hospital infection. Clin Microbiol Rev. 2006;19(3):512–30.
  • Al-Zahrani IA, Hamson C, Edge D, Collins J, Perry JD, Raza M, Gould K, Harwood CR. SmaI restriction site-based multiplex PCR for typing of hospital- and community-acquired Staphylococcus aureus. J Clin Microbiol. 2011;49(11):3820–8.
  • Cooper JE, Feil EJ. Multilocus sequence typing-what is resolved? Trends Microbiol. 2004;12(8):373–7.
  • Enright MC, Spratt BG. Multilocus sequence typing. Trends Microbiol. 1999;7(12):482–7.
  • Samuelsen O, Toleman MA, Sundsfjord A, Rydberg J, Leegaard TM, Walder M, Lia A, Ranheim TE, Rajendra Y, Hermansen NO, et al. Molecular epidemiology of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolates from Norway and Sweden shows import of international clones and local clonal expansion. Antimicrob Agents Chemother. 2010;54(1):346–52.
  • Seok Y, Bae IK, Jeong SH, Kim SH, Lee H, Lee K. Dissemination of IMP-6 metallo-β-lactamase-producing Pseudomonas aeruginosa sequence type 235 in Korea. J Antimicrob Chemother. 2011;66(12):2791–6.
  • Bae IK, Suh B, Jeong SH, Wang K-K, Kim Y-R, Yong D, Lee K. Molecular epidemiology of Pseudomonas aeruginosa clinical isolates from Korea producing β-lactamases with extended-spectrum activity . Diagn Microbiol Infect Dis. 2014;79(3):373–7.
  • Viedma E, Villa J, Juan C, Oliver A, Chaves F. Draft genome sequence of colistin-only-susceptible Pseudomonas aeruginosa strain ST235, a hypervirulent high-risk clone in Spain. Genome Announc. 2014;2(5):e01097–14.
  • Correa A, Del Campo R, Perenguez M, Blanco VM, Rodríguez-Baños M, Perez F, Maya JJ, Rojas L, Cantón R, Arias CA, et al. Dissemination of high-risk clones of extensively drug-resistant Pseudomonas aeruginosa in colombia. Antimicrob Agents Chemother. 2015;59(4):2421–5.
  • Miyoshi-Akiyama T, Tada T, Ohmagari N, Viet Hung N, Tharavichitkul P, Pokhrel BM, Gniadkowski M, Shimojima M, Kirikae T. Emergence and spread of epidemic multidrug-resistant Pseudomonas aeruginosa. Genome Biol Evol. 2017;9(12):3238–45.
  • Walters MS, Grass JE, Bulens SN, Hancock EB, Phipps EC, Muleta D, Mounsey J, Kainer MA, Concannon C, Dumyati G, et al. Carbapenem-resistant Pseudomonas aeruginosa at US emerging infections program sites, 2015. Emerging Infect Dis. 2019;25(7):1281–8.
  • Koutsogiannou M, Drougka E, Liakopoulos A, Jelastopulu E, Petinaki E, Anastassiou ED, Spiliopoulou I, Christofidou M. Spread of multidrug-resistant Pseudomonas aeruginosa clones in a university hospital. J Clin Microbiol. 2013;51(2):665–8.
  • Hong JS, Yoon EJ, Lee H, Jeong SH, Lee K. Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea. Antimicrob Agents Chemother. 2016;60(12):7216–23.
  • Kitao T, Tada T, Tanaka M, Narahara K, Shimojima M, Shimada K, Miyoshi-Akiyama T, Kirikae T. Emergence of a novel multidrug-resistant Pseudomonas aeruginosa strain producing IMP-type metallo-β-lactamases and AAC(6')-Iae in Japan . Int J Antimicrob Agents. 2012;39(6):518–21.
  • van Belkum A, Soriaga LB, LaFave MC, Akella S, Veyrieras J-B, Barbu EM, Shortridge D, Blanc B, Hannum G, Zambardi G, et al. Phylogenetic distribution of CRISPR-Cas systems in antibiotic-resistant Pseudomonas aeruginosa. MBio. 2015;6(6):e01715–96.
  • Moradali MF, Ghods S, Rehm BH. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol. 2017;7:39.
  • Zowawi HM, Ibrahim E, Syrmis MW, Wailan AM, AbdulWahab A, Paterson DL. PME-1-producing Pseudomonas aeruginosa in Qatar. Antimicrob Agents Chemother. 2015;59(6):3692–3.
  • Mataseje LF, Peirano G, Church DL, Conly J, Mulvey M, Pitout JD. Colistin-Nonsusceptible Pseudomonas aeruginosa Sequence Type 654 with blaNDM-1 Arrives in North America. Antimicrob Agents Chemother. 2016;60(3):1794–800.
  • Bourafa N, Chaalal W, Bakour S, Lalaoui R, Boutefnouchet N, Diene SM, Rolain J-M. Molecular characterization of carbapenem-resistant gram-negative bacilli clinical isolates in Algeria. Infect Drug Resist. 2018;11:735–42.
  • Abdouchakour F, Aujoulat F, Licznar-Fajardo P, Marchandin H, Toubiana M, Parer S, Lotthé A, Jumas-Bilak E. Intraclonal variations of resistance and phenotype in Pseudomonas aeruginosa epidemic high-risk clone ST308: A key to success within a hospital? Int J Med Microbiol. 2018;308(2):279–89.
  • Fournier D, Jeannot K, Robert-Nicoud M, Muller E, Cholley P, van der Mee-Marquet N, Plésiat P. Spread of the bla(IMP-13) gene in French Pseudomonas aeruginosa through sequence types ST621, ST308 and ST111. Int J Antimicrob Agents. 2012;40(6):571–3.
  • Kidd TJ, Ritchie SR, Ramsay KA, Grimwood K, Bell SC, Rainey PB. Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS One. 2012;7(9):e44199
  • Mahomed T, Kock M, R M, Hoosien E, Ehlers M, editors. Genetic relatedness of Pseudomonas aeruginosa isolated from cystic fibrosis patients attending a clinic at a tertiary academic hospital in Pretoria, South Africa. Poster session presented at 26th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID 2016) from 9th April to 12th April 2016; 2016; Amsterdam, The Netherlands.
  • Liu H, Kong W, Yang W, Chen G, Liang H, Zhang Y. Multilocus sequence typing and variations in the oprD gene of Pseudomonas aeruginosa isolated from a hospital in China. Infect Drug Resist. 2018;11:45–54.
  • Ellington MJ, Kistler J, Livermore DM, Woodford N. Multiplex PCR for rapid detection of genes encoding acquired metallo-beta-lactamases. J Antimicrob Chemother. 2007;59(2):321–2.
  • Monteiro J, Widen RH, Pignatari AC, Kubasek C, Silbert S. Rapid detection of carbapenemase genes by multiplex real-time PCR. J Antimicrob Chemother. 2012;67(4):906–9.
  • Al-Zahrani IA, Alsiri BA. The emergence of carbapenem-resistant Klebsiella pneumoniae isolates producing OXA-48 and NDM in the Southern (Asir) province, Saudi Arabia. Saudi Med J. 2018;39(1):23–30.
  • Poirel L, Walsh TR, Cuvillier V, Nordmann P. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis. 2011;70(1):119–23.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.