379
Views
0
CrossRef citations to date
0
Altmetric
Antimicrobial Original Research Paper

Antibacterial and antibiofilm activities of ceragenins against Achromobacter species isolated from cystic fibrosis patients

, , &
Pages 216-227 | Received 04 May 2020, Accepted 01 Sep 2020, Published online: 26 Sep 2020

References

  • Lappin-Scott HM and JW Costerton, editors. Microbial biofilms. Cambridge University Press; 1995.
  • Kolenbrander PE. Coaggregation of human oral bacteria: potential role in the accretion of dental plaque. J Appl Microbiol. 1993;74:79S–86S.
  • Ghiorse WC, Wilson JT. Microbial ecology of the terrestrial subsurface. Adv Appl Microbiol. 1988;33:107–73.
  • Lawrence JR, Korber DR, Wolfaardt GM, Caldwell DE. Bacterial behavioral strategies at interfaces. Adv Microb Ecol. 1995;14:1–75.
  • McLean RJC, Fortin D, Brown DA. Microbial metal-binding mechanisms and their relationship to nuclear waste disposal. Can J Microbiol. 1996;42(4):392–400.
  • Costerton JW, Lappin-Scott HM. Behaviour of bacteria in biofilms. ASM News. 1989;55:650–4.
  • Marshall KC. Biofilms: an overview of bacterial adhesion, activity, and control at surfaces. ASM News. 1992;58:202–7.
  • Durham-Colleran MW, Verhoeven AB, Van Hoek ML. Francisella novicida forms in vitro biofilms mediated by an orphan response regulator. Microb Ecol. 2010;59(3):457–65.
  • Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015;372(4):351–62.
  • Lambiase A, Catania MR, Del Pezzo M, Rossano F, Terlizzi V, Sepe A, Raia V. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis. 2011;30(8):973–80.
  • Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14(3):293–304.
  • Trancassini M, Iebba V, Citera N, Tuccio V, Magni A, Varesi P, et al. Outbreak of Achromobacter xylosoxidans in an Italian cystic fibrosis center: genome variability, biofilm production, antibiotic resistance, and motility in isolated strains. Front Microbiol. 2014;5:138.
  • De Baets F, Schelstraete P, Van Daele S, Haerynck F, Vaneechoutte M. Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros. 2007;6(1):75–8.
  • Amoureux L, Bador J, Fardeheb S, Mabille C, Couchot C, Massip C, Salignon A-L, Berlie G, Varin V, Neuwirth C, et al. Detection of Achromobacter xylosoxidans in hospital, domestic, and outdoor environmental samples and comparison with human clinical isolates. Appl Environ Microbiol. 2013;79(23):7142–9.
  • Papalia M, Steffanowski C, Traglia G, Almuzara M, Martina P, Galanternik L, Vay C, Gutkind G, Ramírez MS, Radice M, et al. Diversity of Achromobacter species recovered from patients with cystic fibrosis, in Argentina. Rev Argent Microbiol. 2020;52(1):13–8.
  • Guan Q, Li C, Schmidt EJ, Boswell JS, Walsh JP, Allman GW, Savage PB. Preparation and characterization of cholic acid-derived antimicrobial agents with controlled stabilities. Org Lett. 2000;2(18):2837–40.
  • Chin JN, Jones RN, Sader HS, Savage PB, Rybak MJ. Potential synergy activity of the novel ceragenin, CSA-13, against clinical isolates of Pseudomonas aeruginosa, including multidrug-resistant P. aeruginosa. J Antimicrob Chemother. 2008;61(2):365–70.
  • Surel U, Niemirowicz K, Marzec M, Savage PB, Bucki R. Ceragenins – a new weapon to fight multidrug resistant bacterial infections. Med Stud. 2014;3 (3):207–13.
  • Ozbek-Celik B, Damar-Celik D, Mataraci-Kara E, Bozkurt-Guzel C, Savage PB. Comparative in vitro activities of first and second-generation ceragenins alone and in combination with antibiotics against multidrug-resistant Klebsiella pneumoniae strains. Antibiotics. 2019;8(3):130.
  • Isogai E, Isogai H, Takahashi K, Okumura K, Savage PB. Ceragenin CSA-13 exhibits antimicrobial activity against cariogenic and periodontopathic bacteria. Oral Microbiol Immunol. 2009;24(2):170–2.
  • Gade SS, Nørskov-Lauritsen N, Ridderberg W. Prevalence and species distribution of Achromobacter sp. cultured from cystic fibrosis patients attending the Aarhus centre in Denmark. J Med Microbiol. 2017;66(5):686–9.
  • O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54(1):49–79.
  • Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods. 2000;40(2):175–9.
  • Lai X-Z, Feng Y, Pollard J, Chin JN, Rybak MJ, Bucki R, Epand RF, Epand RM, Savage PB. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc Chem Res. 2008;41(10):1233–40.
  • Durnaś B, Wnorowska U, Pogoda K, Deptuła P, Wątek M, Piktel E, Głuszek S, Gu X, Savage PB, Niemirowicz K, et al. Candidacidal activity of selected ceragenins and human cathelicidin LL-37 in experimental settings mimicking infection sites. PLoS One. 2016;11(6):e0157242.
  • Butt AM, Amin MCIM, Katas H, Sarisuta N, Witoonsaridsilp W, Benjakul R. In vitro characterization of pluronic F127 and D–tocopheryl polyethylene glycol 1000 succinate mixed micelles as nanocarriers for targeted anticancer-drug delivery. J Nanomater. 2012;2012:1–11.
  • The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 10.0, 2020. http://www.eucast.org.
  • Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.
  • Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol. 1999;37(6):1771–6.
  • Li CS, Chia WC, Chen PS. Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2007;42(2):195–203.
  • Bektaş M, Hacıosmanoğlu E, Ozerman B, Varol B, Nurten R, Bermek E. On diphtheria toxin fragment A release into the cytosol-cytochalasin D effect and involvement of actin filaments and eukaryotic elongation factor 2. Int J Biochem Cell Biol. 2011;43(9):1365–72.
  • Ding B, Taotofa U, Orsak T, Chadwell M, Savage PB. Synthesis and characterization of peptide-cationic steroid antibiotic conjugates. Org Lett. 2004;6(20):3433–6.
  • Bellini AM, Vertuani G, Quaglio MP, Cavazzini G. Bile acid derivatives with antimicrobial activity. Farmaco Sci. 1979;34(11):967–78.
  • Zanetti M, Gennaro R, Scocchi M, Skerlavaj B. Structure and biology of cathelicidins. Adv Exp Med Biol. 2000;479:203–18.
  • Bucki R, Pastore JJ, Randhawa P, Vegners R, Weiner DJ, Janmey PA. Antibacterial activities of rhodamine B-conjugated gelsolin-derived peptides compared to those of the antimicrobial peptides cathelicidin LL37, magainin II, and melittin. Antimicrob Agents Chemother. 2004;48(5):1526–33.
  • Polat ZA, Savage PB, Genberg C. In vitro amoebicidal activity of a ceragenin, cationic steroid antibiotic-13, against Acanthamoeba castellanii and its cytotoxic potential. J Ocul Pharmacol Ther. 2011;27(1):1–5.
  • Savage PB, Li C, Taotafa U, Ding B, Guan Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett. 2002;217(1):1–7.
  • Chin JN, Rybak MJ, Cheung CM, Savage PB. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. AAC. 2007;51(4):1268–73.
  • Olekson MA, You T, Savage PB, Leung KP. Antimicrobial ceragenins inhibit biofilms and affect mammalian cell viability and migration in vitro. FEBS Open Bio. 2017;7(7):953–67.
  • Piktel E, Pogoda K, Roman M, Niemirowicz K, Tokajuk G, Wróblewska M, Szynaka B, Kwiatek WM, Savage PB, Bucki R. Sporicidal activity of ceragenin CSA-13 against Bacillus subtilis. Sci Rep. 2017;7:44452.
  • Hacioglu M, Bozkurt-Guzel C, Savage PB, Tan ASB. Antifungal susceptibilities, in vitro production of virulence factors and activities of ceragenins against Candida spp. isolated from vulvovaginal candidiasis. Med Mycol. 2019;57(3):291–9.
  • Howell MD, Streib JE, Kim BE, Lesley LJ, Dunlap AP, Geng D, Feng Y, Savage PB, Leung DYM. Ceragenins: a class of antiviral compounds to treat orthopox infections. J Invest Dermatol. 2009;129(11):2668–75.
  • Lara D, Feng Y, Bader J, Savage PB, Maldonado RA. Anti-trypanosomatid activity of ceragenins. J Parasitol. 2010;96(3):638–42.
  • Bozkurt-Guzel C, Savage PB, Akcali A, Ozbek‐Celik B. Potential synergy activity of the novel ceragenin, CSA‐13, against carbapenem‐resistant Acinetobacter baumannii strains isolated from bacteremiapatients. Biomed Res Int. 2014;2014:710273.
  • Hashemi MM, Rovig J, Weber S, Hilton B, Forouzan MM, Savage PB. Susceptibility of colistin-resistant, Gram-negative bacteria to antimicrobial peptides and ceragenins. Antimicrob Agents Chemother. 2017;61(8):e00292–17.
  • Bozkurt-Guzel C, Oyardi O, Savage PB. Comparative in vitro antimicrobial activities of CSA-142 and CSA-192, second-generation ceragenins, with CSA-13 against various microorganisms. J Chemother. 2018;30(6–8):332–7.
  • Vila-Farrés X, Callarisa AE, Gu X, Savage PB, Giralt E, Vila J. CSA131, a ceragenin active against colistin-resistant Acinetobacter baumannii and Pseudomonas aeruginosa clinical isolates. Int J Antimicrob Agents. 2015;46(5):568–71.
  • Wnorowska U, Piktel E, Durnaś B, Fiedoruk K, Savage PB, Bucki R. Use of ceragenins as a potential treatment for urinary tract infections. BMC Infect Dis. 2019;19(1):369.
  • Branda SS, Vik S, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends Microbiol. 2005;13(1):20–6.
  • Gu X, Jennings JD, Snarr J, Chaudhary V, Pollard JE, Savage PB. Optimization of ceragenins for prevention of bacterial colonization of hydrogel contact lenses. Invest Ophthalmol Vis Sci. 2013;54(9):6217–23.
  • Nagant C, Pitts B, Stewart PS, Feng Y, Savage PB, Dehaye JP. Study of the effect of antimicrobial peptide mimic, CSA-13, on an established biofilm formed by Pseudomonas aeruginosa. Microbiologyopen. 2013;2(2):318–25.
  • Bozkurt-Guzel C, Hacioglu M, Savage PB. Investigation of the in vitro antifungal and antibiofilm activities of ceragenins CSA-8, CSA-13, CSA-44, CSA-131, and CSA-138 against Candida species. Diagn Microbiol Infect Dis. 2018;91(4):324–30.
  • Pitto-Barry A, Barry NPE. Pluronic block-copolymers in medicine: From chemical and biological versatility to rationalization and clinical advances. Polym Chem. 2014;5(10):3291–7.
  • Nagant C, Savage PB, Dehaye JP. Effect of pluronic acid F-127 on the toxicity towards eukaryotic cells of CSA-13, a cationic steroid analogue of antimicrobial peptides. J Appl Microbiol. 2012;112(6):1173–83.
  • Leszczyńska K, Namiot A, Cruz K, Byfield FJ, Won E, Mendez G, Sokołowski W, Savage PB, Bucki R, Janmey PA. Potential of ceragenin CSA-13 and its mixture with pluronic F-127 as treatment of topical bacterial infections. J Appl Microbiol. 2011;110(1):229–36.
  • Ding B, Yin N, Liu Y, Cardenas-Garcia J, Evanson R, Orsak T, Fan M, Turin G, Savage PB. Origins of cell selectivity of cationic steroid antibiotics. J Am Chem Soc. 2004;126(42):13642–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.