122
Views
5
CrossRef citations to date
0
Altmetric
Anticancer Original Research Papers

Circ_0007841 knockdown confers cisplatin sensitivity to ovarian cancer cells by down-regulation of NFIB expression in a miR-532-5p-dependent manner

&
Pages 117-130 | Received 05 Jan 2022, Accepted 18 Mar 2022, Published online: 05 Apr 2022

References

  • Kossaï M, Leary A, Scoazec JY, et al. Ovarian cancer: a heterogeneous disease. Pathobiology. 2018;85(1-2):41–49.
  • Markman M. Pharmaceutical management of ovarian cancer: current status. Drugs. 2019;79(11):1231–1239.
  • Motohara T, Katabuchi H. Ovarian cancer stemness: biological and clinical implications for metastasis and chemotherapy resistance. Cancers (Basel). 2019;11(7):907.
  • Fathalla MF. Incessant ovulation–a factor in ovarian neoplasia? Lancet. 1971;2(7716):163.
  • Conte E, Bresciani E, Rizzi L, et al. Cisplatin-induced skeletal muscle dysfunction: mechanisms and counteracting therapeutic strategies. Int J Mol Sci. 2020;21:1242.
  • Giacomini I, Ragazzi E, Pasut G, et al. The pentose phosphate pathway and its involvement in cisplatin resistance. Int J Mol Sci. 2020;21:937.
  • Ashrafizadeh M, Zarrabi A, Hushmandi K, et al. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: role of microRNAs and upstream mediators. Cell Signal. 2021;78:109871.
  • Li J, Yang S, Su N, et al. Overexpression of long non-coding RNA HOTAIR leads to chemoresistance by activating the wnt/β-catenin pathway in human ovarian cancer. Tumour Biol. 2016;37(2):2057–2065.
  • Mirzaei S, Gholami MH, Hashemi F, et al. Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: approaching to a new era of cancer chemotherapy. Life Sci. 2021;277:119430.
  • Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 2019;20(11):675–691.
  • Papatsirou M, Artemaki PI, Scorilas A, et al. The role of circular RNAs in therapy resistance of patients with solid tumours. Per Med. 2020;17(6):469–490.
  • Wang Y, Lin Q, Song C, et al. Circ_0007841 promotes the progression of multiple myeloma through targeting miR-338-3p/BRD4 signalling Cascade. Cancer Cell Int. 2020;20:383.
  • Wang Y, Lin Q, Song C, et al. Depletion of circ_0007841 inhibits multiple myeloma development and BTZ resistance via miR-129-5p/JAG1 axis. Cell Cycle. 2020;19(23):3289–3302.
  • Huang K, Liu D, Su C. Circ_0007841 accelerates ovarian cancer development through facilitating MEX3C expression by restraining miR-151-3p activity. Aging (Albany NY). 2021;13(8):12058–12066.
  • Xu T, Wang M, Jiang L, et al. CircRNAs in anticancer drug resistance: recent advances and future potential. Mol Cancer. 2020;19(1):127.
  • Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297.
  • Xia H, Hui KM. Mechanism of cancer drug resistance and the involvement of noncoding RNAs. Curr Med Chem. 2014;21(26):3029–3041.
  • Hu Z, Cai M, Zhang Y, et al. miR-29c-3p inhibits autophagy and cisplatin resistance in ovarian cancer by regulating FOXP1/ATG14 pathway. Cell Cycle. 2020;19(2):193–206.
  • Liu R, Zhang Y, Sun P, et al. DDP-resistant ovarian cancer cells-derived exosomal microRNA-30a-5p reduces the resistance of ovarian cancer cells to DDP. Open Biol. 2020;10(4):190173.
  • Wei H, Tang QL, Zhang K, et al. miR-532-5p is a prognostic marker and suppresses cells proliferation and invasion by targeting TWIST1 in epithelial ovarian cancer. Eur Rev Med Pharmacol Sci. 2018;22(18):5842–5850.
  • Wang X, Zhang H, Bai M, et al. Exosomes serve as nanoparticles to deliver anti-miR-214 to reverse chemoresistance to cisplatin in gastric cancer. Mol Ther. 2018;26(3):774–783.
  • Dong C, Yin F, Zhu D, et al. NCALD affects drug resistance and prognosis by acting as a ceRNA of CX3CL1 in ovarian cancer. J Cell Biochem. 2020;121(11):4470–4483.
  • Vo C, Carney ME. Ovarian cancer hormonal and environmental risk effect. Obstet Gynecol Clin North Am. 2007;34(4):687–700, viii.
  • Roett MA, Evans P. Ovarian cancer: an overview. Am Fam Physician. 2009;80(6):609–616.
  • Pang J, Ye L, Zhao D, et al. Circular RNA PRMT5 confers cisplatin-resistance via miR-4458/REV3L axis in non-small-cell lung cancer. Cell Biol Int. 2020;44(12):2416–2426.
  • Gao F, Han J, Wang Y, et al. Circ_0109291 promotes the cisplatin resistance of oral squamous cell carcinoma by sponging miR-188-3p to increase ABCB1 expression. Cancer Biother Radiopharm. 2020.doi: 10.1089/cbr.2020.3928
  • Sakaeda T, Nakamura T, Hirai M, et al. MDR1 up-regulated by apoptotic stimuli suppresses apoptotic signalling. Pharm Res. 2002;19(9):1323–1329.
  • Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer. 2002;2(1):48–58.
  • Ruivo CF, Adem B, Silva M, et al. The biology of cancer exosomes: Insights and new perspectives. Cancer Res. 2017;77(23):6480–6488.
  • Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367(6478):367.
  • Thomson DW, Dinger ME. Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet. 2016;17(5):272–283.
  • Huang L, Tang X, Shi X, et al. miR-532-5p promotes breast cancer proliferation and migration by targeting RERG. Exp Ther Med. 2020;19:400–408.
  • Wang YP, Liu J, Liu D, et al. MiR-532-5p acts as a tumour suppressor and inhibits glioma cell proliferation by targeting CSF1. Eur Rev Med Pharmacol Sci. 2020;24(13):7206.
  • Hu J, Wang L, Guan C. MiR-532-5p suppresses migration and invasion of lung cancer cells through inhibiting CCR4. Cancer Biother Radiopharm. 2020;35(9):673–681.
  • Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14:dmm047662.
  • Kruse U, Sippel AE. Transcription factor nuclear factor I proteins form stable homo- and heterodimers. FEBS Lett. 1994;348(1):46–50.
  • Denny SK, Yang D, Chuang C-H, et al. NFIB promotes metastasis through a widespread increase in chromatin accessibility. Cell. 2016;166(2):328–342.
  • Wu C, Zhu X, Liu W, et al. NFIB promotes cell growth, aggressiveness, metastasis and EMT of gastric cancer through the akt/Stat3 signalling pathway. Oncol Rep. 2018;40(3):1565–1573.
  • Pan ST, Li ZL, He ZX, et al. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol. 2016;43(8):723–737.
  • Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016;21(7):965.
  • Qi X, Zhang DH, Wu N, et al. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52(10):710–718.
  • Liu Z, Chen J, Yuan W, et al. Nuclear factor I/B promotes colorectal cancer cell proliferation, epithelial-mesenchymal transition and 5-fluorouracil resistance. Cancer Sci. 2019;110(1):86–98.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.