127
Views
0
CrossRef citations to date
0
Altmetric
Antimicrobial Original Research Papers

Causative agents of bloodstream infections in two Croatian hospitals and their resistance mechanisms

, , , , , , , , & show all
Pages 281-291 | Received 15 Mar 2022, Accepted 18 Jul 2022, Published online: 17 Aug 2022

References

  • Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–810.
  • Mulani MS, Kamble EE, Kumkar SN, et al. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: a review. Front Microbiol. 2019;10(539):539.
  • Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res Int. 2016;2016:2475067.
  • Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother. 2004;48(1):1–14.
  • Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-M-type extended-spectrum β-lactamases. Clin Microbiol Infect. 2008;14(1):33–41.
  • García-Gómez M, Guío L, Hernández JL, et al. Bacteriemias por enterobacterias productoras de β-lactamasas (BLEE, AmpC, carbapenemasas): asociación con los cuidados sanitarios y los pacientes oncológicos [Bacteraemia due to extended-spectrum β-lactamases (ESBL) and other β-lactamases (ampC and carbapenemase) producing enterobacteriaceae: association with health-care and cancer]. Rev Esp Quimioter. 2015;28(5):256–262.
  • Rodríguez-Baño J, Navarro MD, Romero L, et al. Bacteremia due to extended-spectrum β-lactamase-producing Escherichia coli in the CTX-M era: a new clinical challenge. Clin Infect Dis. 2006;43(11):1407–1414.
  • Kim SJ, Park KH, Chung JW, et al. Prevalence and impact of extended-spectrum β-lactamase production on clinical outcomes in cancer patients with Enterobacter species bacteremia. Korean J Intern Med. 2014;29(5):637–646.
  • Tomić M. Molecular epidemiology and distribution of extended-spectrum β-lactamases among hospital and community acquired Escherichia coli isolates in advanced stage of dissemination [PhD thesis]. Osijek: Medical University; 2019.
  • McKamey L, Venugopalan V, Cherabuddi K, et al. Assessing antimicrobial stewardship initiatives: clinical evaluation of cefepime or piperacillin/tazobactam in patients with bloodstream infections secondary to AmpC-producing organisms. Int J Antimicrob Agents. 2018;52(5):719–723.
  • Mukherjee S, Bhattacharjee A, Naha S, et al. Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. Infect Genet Evol. 2019;69:166–175.
  • Abdulall AK, Tawfick MM, El Manakhly AR, et al. Carbapenem-resistant gram-negative bacteria associated with catheter-related bloodstream infections in three intensive care units in Egypt. Eur J Clin Microbiol Infect Dis. 2018;37(9):1647–1652.
  • Shi Q, Huang C, Xiao T, et al. A retrospective analysis of Pseudomonas aeruginosa bloodstream infections: prevalence, risk factors, and outcome in carbapenem-susceptible and -non-susceptible infections. Antimicrob Resist Infect Control. 2019;8:68.
  • EUCAST guidelines. https://www.eucast.org/EUCAST_files/breakpointtables/v_11.0-breakpoint-tables.Pdf.
  • Magiorakos AP, Srinivasan A, Carey RB, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268–281.
  • Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 26th ed. CLSI supplement. M100-S. Wayne, PA: CLSI; 2016.
  • Jarlier V, Nicolas MH, Fournier G, et al. Extended broad-spectrum β-lactamases conferring transferable resistance to newer β-lactam agents in enterobacteriaceae: hospital prevalence and susceptibility patterns. Rev Infect Dis. 1988;10(4):867–878.
  • Pournaras S, Maniati M, Spanakis N, et al. Spread of efflux pump-overexpressing, non-metallo-β-lactamase-producing, meropenem-resistant but ceftazidime-susceptible Pseudomonas aeruginosa in a region with blaVIM endemicity. J Antimicrob Chemother. 2005;56(4):761–764.
  • Coudron PE. Inhibitor-based methods for detection of plasmid-mediated AmpC β-lactamases in Klebsiella spp, Escherichia coli and Proteus mirabilis. J Clin Microbiol. 2005;43(8):4163–4167.
  • Lee K, Lim YS, Yong D, et al. Evaluation of the hodge test and the imipenem-EDTA-double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol. 2003;41(10):4623–4629.
  • van der Zwaluw K, de Haan A, Pluister GN, et al. The carbapenem inactivation method (CIM), a simple and low-cost alternative for the carba NP test to assess phenotypic carbapenemase activity in gram-negative rods. PLoS One. 2015;10(3):e0123690.
  • Pasteran F, Mendez T, Guerriero L, et al. A sensitive screening test for suspected class A carbapenemase production in species of enterobacteriaceae. J Clin Microbiol. 2009;47(6):1631–1639.
  • Elwell LP, Falkow S. The characterization of R plasmids and the detection of plasmid-specified genes. In: Lorian V, editor. Antibiotics in laboratory medicine. 2nd ed. Baltimore (MD): Williams and Wilkins, 1986. p. 683–721.
  • Nüesch-Inderbinen MT, Hächler H, Kayser FH. Detection of genes coding for extended-spectrum SHV β-lactamases in clinical isolates by a molecular genetic method, and comparison with the E test. Eur J Clin Microbiol Infect Dis. 1996;15(5):398–402.
  • Arlet G, Brami G, Decre D, et al. Molecular characterization by PCR restriction fragment polymorphism of TEM β-lactamases. FEMS Microbiol Lett. 1995;134:203–208.
  • Woodford N, Ward ME, Kaufmann ME, et al. Community and hospital spread of Escherichia coli producing CTX-M extended-spectrum beta-lactamases in the UK. J Antimicrob Chemother. 2004;54(4):735–743.
  • Pagani L, Mantengoli E, Migliavacca R, et al. Multifocal detection of multidrug-resistant Pseudomonas aeruginosa producing the PER-1 extended-spectrum beta-lactamase in Northern Italy. J Clin Microbiol. 2004;42(6):2523–2529.
  • Perez-Perez FJ, Hanson ND. Detection of plasmid-mediated AmpC β-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol. 2002;40(6):2153–2162.
  • Poirel L, Walsh TR, Cuvillier V, et al. Multiplex PCR for detection of acquired carbapenemases genes. Diagn Microbiol Infect Dis. 2011;70(1):119–125.
  • Robicsek A, Jacoby GA, Hooper DC. The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis. 2006;6(10):629–640.
  • Woodford N, Fagan EJ, Ellington MJ. Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum β-lactamases. J Antimicrob Chemother. 2006;57(1):154–155.
  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168.
  • Woodford N, Ellington MJ, Coelho J, et al. Multiplex PCR for genes encoding prevalent OXA carbapenemases. Int J Antimicrob Agents. 2006;27(4):351–353.
  • Jeong SH, Lee K, Chong Y, et al. Characterization of a new integron containing VIM-2, a metallo- beta-lactamase gene cassette, in a clinical isolate of Enterobacter cloacae. J Antimicrob Chemother. 2003;51(2):397–400.
  • Turton JF, Ward ME, Woodford N, et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258(1):72–77.
  • Saladin M, Cao VT, Lambert T, et al. Diversity of CTX-M beta-lactamases and their promoter regions from enterobacteriaceae isolated in three parisian hospitals. FEMS Microbiol Lett. 2002;209(2):161–168.
  • Giani T, Conte V, Di Pilato V, et al. Escherichia coli from Italy producing OXA-48 carbapenemase encoded by a novel Tn1999 transposon derivative. Antimicrob Agents Chemother. 2012;56(4):2211–2213.
  • Zankari E, Hasman H, Cosentino S, et al. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67(11):2640–2644.
  • Carattoli A, Bertini A, Villa L, et al. Identification of plasmids by PCR-based replicon typing. J Microbiol Methods. 2005;63(3):219–228.
  • Carattoli A, Seiffert SN, Schwendener S, et al. Differentiation of IncL and IncM plasmids associated with the spread of clinically relevant antimicrobial resistance. PLoS One. 2015;10(5):e0123063.
  • Bertini A, Poirel L, Mugnier PD, et al. Characterization and PCR-based replicon typing of resistance plasmids in Acinetobacter baumannii. Antimicrob Agents Chemother. 2010;54(10):4168–4177.
  • Turton JF, Gabriel SN, Valderrey C, et al. Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin Microbiol Infect. 2007;13(8):807–815.
  • Schöneweck F, Schmitz RPH, Rißner F, et al. The epidemiology of bloodstream infections and antimicrobial susceptibility patterns in thuringia, Germany: a five-year prospective, state-wide surveillance study (AlertsNet). Antimicrob Resist Infect Control. 2021;10(1):132.
  • Bedenić B, Slade M, Žele- Starčević L, et al. Epidemic spread of OXA-48 β-lactamase in Croatia. J Med Microbiol. 2018;67(8):1031–1034.
  • Zujić-Atalić V, Bedenić B, Kocsis E, et al. Diversity of carbapenemases in clinical isolates of enterobacteriaceae in Croatia-the results of the multicenter study. Clin Microbiol Infect. 2014;20(11):894–903.
  • Bošnjak Z, Bedenić B, Mazzariol A, et al. VIM-2 β-lactamase in Pseudomonas aeruginosa isolates from zagreb. Scand J Infect Dis. 2010;42(3):193–197.
  • Franolić-Kukina I, Bedenić B, Budimir A, et al. Clonal spread of carbapenem-resistant OXA-72 positive Acinetobacter baumannii in a Croatian University hospital. Int J Infect Dis. 2011;15(10):e706–e9.
  • Vranić-Ladavac M, Bedenić B, Minandri F, et al. Carbapenem-resistance and acquired class D carbapenemases in Acinetobacter baumannii from Croatia 2009-2010. Eur J Clin Microbiol Infect Dis. 2014;33(3):471–478.
  • Bratić V, Mihaljević S, Verzak Ž, et al. Prophylactic application of antibiotics selects extended-spectrum β-lactamase and carbapenemases producing gram-negative bacteria in the oral cavity. Lett Appl Microbiol. 2021;73(2):206–219.
  • Liu C, Liu L, Jin MM, et al. Molecular epidemiology and risk factors of carbapenem-resistant Klebsiella Pneumoniae bloodstream infections in wuhan, China. Curr Med Sci. 2022;42(1):68–76.
  • Bedenić B, Mazzariol A, Plečko V, et al. First report of KPC-producing Klebsiella pneumoniae in Croatia. J Chemother. 2012;24(4):237–239.
  • Clemenceau M, Ahmed-Elie S, Vilfaillot A, et al. Appropriateness of empirical antibiotic prescription for bloodstream infections in an emergency department from 2006 to 2018: impact of the spread of ESBL-producing enterobacterales. Eur J Clin Microbiol Infect Dis. 2022;41(1):71–77.
  • Zhang Y, Wang H, Li Y, et al. Drug susceptibility and molecular epidemiology of Escherichia coli in bloodstream infections in Shanxi, China. Peer J. 2021;9:e1237.
  • Budimir A, Deurenberg RH, Plečko V, et al. Molecular characterization of methicillin-resistant Staphylococcus aureus bloodstream isolates from Croatia. J Antimicrob Chemother. 2006;57(2):331–334.
  • Boattini M, Bianco G, Comini S, et al. Direct detection of extended-spectrum-β-lactamase-producers in enterobacterales from blood cultures: a comparative analysis. Eur J Clin Microbiol Infect Dis. 2022;3:407–413.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.