143
Views
1
CrossRef citations to date
0
Altmetric
Review

RANK pathway in cancer: underlying resistance and therapeutic approaches

ORCID Icon &
Pages 369-382 | Received 07 Apr 2022, Accepted 23 Sep 2022, Published online: 06 Oct 2022

References

  • Anderson DM, Maraskovsky E, Billingsley WL, et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 1997;390(6656):175–179.
  • Wong BR, Rho J, Arron J, et al. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J Biol Chem. 1997;272(40):25190–25194.
  • Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–2424.
  • Mizuno A, Amizuka N, Irie K, et al. Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun. 1998;247(3):610–615.
  • Lacey DL, Boyle WJ, Simonet WS, et al. Bench to bedside: elucidation of the OPG–RANK–RANKL pathway and the development of denosumab. Nat Rev Drug Discov. 2012;11(5):401–419.
  • Fata JE, Kong Y-Y, Li J, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103(1):41–50.
  • Schramek D, Leibbrandt A, Sigl V, et al. Osteoclast differentiation factor RANKL controls development of progestin-driven mammary cancer. Nature. 2010;468(7320):98–102.
  • Wu X, Li F, Dang L, et al. RANKL/RANK system-based mechanism for breast cancer bone metastasis and related therapeutic strategies. Front Cell Dev Biol. 2020;8:76.
  • Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. The Lancet. 2011;377(9773):1276–1287.
  • Miller PD. Denosumab: anti-RANKL antibody. Curr Osteoporos Rep. 2009;7(1):18–22.
  • Tufail M, Wu C. Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv. 2022;13(3):167–186.
  • Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(S8):1588–1594.
  • Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat Rev Cancer. 2011;11(6):411–425.
  • Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80(S8):1546–1556.
  • Kingsley LA, Fournier PG, Chirgwin JM, et al. Molecular biology of bone metastasis. Mol Cancer Ther. 2007;6(10):2609–2617.
  • Dougall WC. Molecular pathways: osteoclast-dependent and osteoclast-independent roles of the RANKL/RANK/OPG pathway in tumorigenesis and metastasis. Clin Cancer Res. 2012;18(2):326–335.
  • Paget S. The distribution of secondary growths in cancer of the breast. Cancer Metastasis Rev. 1989;8(2):98–101.
  • Thomas RJ, Guise TA, Yin JJ, et al. Breast cancer cells interact with osteoblasts to support osteoclast formation. Endocrinology. 1999;140(10):4451–4458.
  • Giuliani N, Colla S, Sala R, et al. Human myeloma cells stimulate the receptor activator of nuclear factor-κB ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood. 2002;100(13):4615–4621.
  • Roux S, Mariette X. The high rate of bone resorption in multiple myeloma is due to RANK (receptor activator of nuclear factor-κB) and RANK ligand expression. Leuk Lymphoma. 2004;45(6):1111–1118.
  • Terpos E, Szydlo R, Apperley JF, et al. Soluble receptor activator of nuclear factor κB ligand–osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood. 2003;102(3):1064–1069.
  • Mikami S, Katsube K, Oya M, et al. Increased RANKL expression is related to tumour migration and metastasis of renal cell carcinomas. J Pathol. 2009;218(4):530–539.
  • Sasaki A, Ishikawa K, Haraguchi N, et al. Receptor activator of nuclear factor-κB ligand (RANKL) expression in hepatocellular carcinoma with bone metastasis. Ann Surg Oncol. 2007;14(3):1191–1199.
  • Blake ML, Tometsko M, Miller R, et al. RANK expression on breast cancer cells promotes skeletal metastasis. Clin Exp Metastasis. 2014;31(2):233–245.
  • Huang L, Xu J, Wood DJ, et al. Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-κB in giant cell tumor of bone: possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol. 2000;156(3):761–767.
  • Schneeweis LA, Willard D, Milla ME. Functional dissection of osteoprotegerin and its interaction with receptor activator of NF-κB ligand. J Biol Chem. 2005;280(50):41155–41164.
  • Singh AS, Chawla NS, Chawla SP. Giant-cell tumor of bone: treatment options and role of denosumab. Biologics. 2015;9:69.
  • Lamoureux F, Richard P, Wittrant Y, et al. Therapeutic relevance of osteoprotegerin gene therapy in osteosarcoma: blockade of the vicious cycle between tumor cell proliferation and bone resorption. Cancer Res. 2007;67(15):7308–7318.
  • Tufail M. Genome editing: an essential technology for cancer treatment. Med Omics. 2022;4:100015.
  • Ottaviani G, Jaffe N. The epidemiology of osteosarcoma. In Jaffe N, Bruland O, Bielack S, eds. Pediatric and adolescent osteosarcoma. Boston (MA): Springer; 2009; p. 3–13.
  • Hsu CJ, Lin TY, Kuo CC, et al. Involvement of integrin up‐regulation in RANKL/RANK pathway of chondrosarcomas migration. J Cell Biochem. 2010;111(1):138–147.
  • Miller RE, Roudier M, Jones J, et al. RANK ligand inhibition plus docetaxel improves survival and reduces tumor burden in a murine model of prostate cancer bone metastasis. Mol Cancer Ther. 2008;7(7):2160–2169.
  • Chen G, Sircar K, Aprikian A, et al. Expression of RANKL/RANK/OPG in primary and metastatic human prostate cancer as markers of disease stage and functional regulation. Cancer. 2006;107(2):289–298.
  • Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–822.
  • Henry DH, Costa L, Goldwasser F, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–1132.
  • Chu GC-Y, Chung LW. RANK-mediated signaling network and cancer metastasis. Cancer Metastasis Rev. 2014;33(2–3):497–509.
  • Wong BR, Josien R, Lee SY, et al. TRANCE (tumor necrosis factor [TNF]-related activation-induced cytokine), a new TNF family member predominantly expressed in T cells, is a dendritic cell–specific survival factor. J Exp Med. 1997;186(12):2075–2080.
  • Gonzalez-Suarez E, Jacob AP, Jones J, et al. RANK ligand mediates progestin-induced mammary epithelial proliferation and carcinogenesis. Nature. 2010;468(7320):103–107.
  • Tan W, Zhang W, Strasner A, et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL–RANK signalling. Nature. 2011;470(7335):548–553.
  • Li H, Hong S, Qian J, et al. Cross talk between the bone and immune systems: osteoclasts function as antigen-presenting cells and activate CD4+ and CD8+ T cells. Blood. 2010;116(2):210–217.
  • Chen N-J, Huang M-W, Hsieh S-L. Enhanced secretion of IFN-γ by activated Th1 cells occurs via reverse signaling through TNF-related activation-induced cytokine. J Immunol. 2001;166(1):270–276.
  • Zhang S, Wang X, Li G, et al. Osteoclast regulation of osteoblasts via RANK-RANKL reverse signal transduction in vitro. Mol Med Rep. 2017;16(4):3994–4000.
  • Tilborghs S, Corthouts J, Verhoeven Y, et al. The role of nuclear factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol. 2017;120:141–150.
  • Goswami S, Sharma-Walia N. Osteoprotegerin rich tumor microenvironment: implications in breast cancer. Oncotarget. 2016;7(27):42777–42791.
  • Renema N, Navet B, Heymann M-F, et al. RANK–RANKL signalling in cancer. Biosci Rep. 2016;36(4):e00366.
  • Reid PE, Brown NJ, Holen I. Breast cancer cells stimulate osteoprotegerin (OPG) production by endothelial cells through direct cell contact. Mol Cancer. 2009;8(1):49.
  • Liu Y, Wang J, Ni T, et al. CCL20 mediates RANK/RANKL-induced epithelial-mesenchymal transition in endometrial cancer cells. Oncotarget. 2016;7(18):25328–25339.
  • Min JK, Kim YM, Kim YM, et al. Vascular endothelial growth factor up-regulates expression of receptor activator of NF-kappa B (RANK) in endothelial cells. Concomitant increase of angiogenic responses to RANK ligand. J Biol Chem. 2003;278(41):39548–39557.
  • Karamouzis MV, Likaki-Karatza E, Ravazoula P, et al. Non-palpable breast carcinomas: correlation of mammographically detected malignant-appearing microcalcifications and molecular prognostic factors. Int J Cancer. 2002;102(1):86–90.
  • Tot T, Gere M, Hofmeyer S, et al. The clinical value of detecting microcalcifications on a mammogram. Semin Cancer Biol. 2021;72:165–174.
  • Jones DH, Nakashima T, Sanchez OH, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–696.
  • Jacob A, Branstetter D, Rohrbach K, et al. P3-01-14: RANK and RANK ligand (RANKL) expression in invasive breast carcinoma and human breast cancer cell lines. AACR. 2011;71(24 Suppl):P3-01-14.
  • Chawla S, Henshaw R, Seeger L, et al. Safety and efficacy of denosumab for adults and skeletally mature adolescents with giant cell tumour of bone: interim analysis of an open-label, parallel-group, phase 2 study. Lancet Oncol. 2013;14(9):901–908.
  • Palafox M, Ferrer I, Pellegrini P, et al. RANK induces epithelial–mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res. 2012;72(11):2879–2888.
  • Sousa S, Gineyts E, Geraci S, et al. RANK-RANKL signaling inhibition delays early breast cancer bone metastasis formation. Cancer Res. 2018;78(13 Suppl):29.
  • Vargas G, Bouchet M, Bouazza L, et al. ERRα promotes breast cancer cell dissemination to bone by increasing RANK expression in primary breast tumors. Oncogene. 2019;38(7):950–964.
  • Infante M, Fabi A, Cognetti F, et al. RANKL/RANK/OPG system beyond bone remodeling: involvement in breast cancer and clinical perspectives. J Exp Clin Cancer Res. 2019;38(1):12.
  • Asano T, Okamoto K, Nakai Y, et al. Soluble RANKL is physiologically dispensable but accelerates tumour metastasis to bone. Nat Metab. 2019;1(9):868–875.
  • Langley RR, Fidler IJ. The seed and soil hypothesis revisited—the role of tumor‐stroma interactions in metastasis to different organs. Int J Cancer. 2011;128(11):2527–2535.
  • Ben-Baruch A. Site-specific metastasis formation: chemokines as regulators of tumor cell adhesion, motility and invasion. Cell Adh Migr. 2009;3(4):328–333.
  • Azim H, Azim HA. Targeting RANKL in breast cancer: bone metastasis and beyond. Expert Rev Anticancer Ther. 2013;13(2):195–201.
  • Sanders JL, Chattopadhyay N, Kifor O, et al. Extracellular calcium-sensing receptor expression and its potential role in regulating parathyroid hormone-related peptide secretion in human breast cancer cell lines. Endocrinology. 2000;141(12):4357–4364.
  • Whyte MP, Obrecht SE, Finnegan PM, et al. Osteoprotegerin deficiency and juvenile Paget’s disease. N Engl J Med. 2002;347(3):175–184.
  • Samani AA, Yakar S, LeRoith D, et al. The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev. 2007;28(1):20–47.
  • Maki RG. Small is beautiful: insulin-like growth factors and their role in growth, development, and cancer. J Clin Oncol. 2010;28(33):4985–4995.
  • Soki FN, Park SI, McCauley LK. The multifaceted actions of PTHrP in skeletal metastasis. Future Oncol. 2012;8(7):803–817.
  • Le Pape F, Vargas G, Clézardin P. The role of osteoclasts in breast cancer bone metastasis. J Bone Oncol. 2016;5(3):93–95.
  • Moasser MM. The oncogene HER2: its signaling and transforming functions and its role in human cancer pathogenesis. Oncogene. 2007;26(45):6469–6487.
  • Bose R, Kavuri SM, Searleman AC, et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013;3(2):224–237.
  • Kancha RK, Von Bubnoff N, Bartosch N, et al. Differential sensitivity of ERBB2 kinase domain mutations towards lapatinib. PLoS One. 2011;6(10):e26760.
  • Sanz-Moreno A, Palomeras S, Pedersen K, et al. RANK signaling increases after anti-HER2 therapy contributing to the emergence of resistance in HER2-positive breast cancer. Breast Cancer Res. 2021;23(1):42.
  • Gomes I, de Almeida BP, Dâmaso S, et al. Expression of receptor activator of NFkB (RANK) drives stemness and resistance to therapy in ER + HER2- breast cancer. Oncotarget. 2020;11(19):1714–1728.
  • Tsubaki M, Takeda T, Yoshizumi M, et al. RANK-RANKL interactions are involved in cell adhesion-mediated drug resistance in multiple myeloma cell lines. Tumour Biol. 2016;37(7):9099–9110.
  • Mashimo K, Tsubaki M, Takeda T, et al. RANKL-induced c-Src activation contributes to conventional anti-cancer drug resistance and dasatinib overcomes this resistance in RANK-expressing multiple myeloma cells. Clin Exp Med. 2019;19(1):133–141.
  • van Dam PA, Verhoeven Y, Trinh XB, et al. RANK/RANKL signaling inhibition may improve the effectiveness of checkpoint blockade in cancer treatment. Crit Rev Oncol Hematol. 2019;133:85–91.
  • Morony S, Warmington K, Adamu S, et al. The inhibition of RANKL causes greater suppression of bone resorption and hypercalcemia compared with bisphosphonates in two models of humoral hypercalcemia of malignancy. Endocrinology. 2005;146(8):3235–3243.
  • Canon JR, Roudier M, Bryant R, et al. Inhibition of RANKL blocks skeletal tumor progression and improves survival in a mouse model of breast cancer bone metastasis. Clin Exp Metastasis. 2008;25(2):119–129.
  • Body JJ, Greipp P, Coleman RE, et al. A phase I study of AMGN‐0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases. Cancer. 2003;97(3 Suppl):887–892.
  • Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273(23):14363–14367.
  • Cummings SR, Martin JS, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–765.
  • Stopeck AT, Lipton A, Body J-J, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–5139.
  • Martin M, Bell R, Bourgeois H, et al. Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res. 2012;18(17):4841–4849.
  • Abrahamsen B, Teng A. Technology evaluation: denosumab, Amgen. Curr Opin Mol Ther. 2005;7(6):604–610.
  • Baron R, Ferrari S, Russell RGG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone. 2011;48(4):677–692.
  • Coleman R, Finkelstein DM, Barrios C, et al. Adjuvant denosumab in early breast cancer (D-CARE): an international, multicentre, randomised, controlled, phase 3 trial. Lancet Oncol. 2020;21(1):60–72.
  • Presurgical trial of denosumab in breast cancer. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02900469?cond=NCT02900469&draw=2&rank=1.
  • Stefanovic S, Diel I, Sinn P, et al. Disseminated tumor cells in the bone marrow of patients with operable primary breast cancer: prognostic impact in immunophenotypic subgroups and clinical implication for bisphosphonate treatment. Ann Surg Oncol. 2016;23(3):757–766.
  • Ueno NT, Tahara RK, Saigal B, et al. Phase II study of Ra-223 combined with hormonal therapy and denosumab for treatment of hormone receptor-positive breast cancer with bone-dominant metastasis. JCO. 2018;36(15_suppl):1065–1065.
  • Study to determine treatment effects of denosumab in patients with breast cancer receiving aromatase inhibitor therapy. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT00556374?cond=NCT00556374&draw=2&rank=1.
  • Lipton A. Randomized trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. Breast Dis. 2009;20(2):195–196.
  • Denosumab (AMG 162) in bisphosphonate naive metastatic breast cancer. 2014. Available from: https://clinicaltrials.gov/ct2/show/NCT00091832?cond=NCT00091832&draw=2&rank=1.
  • RANKL inhibition and breast tissue biomarkers. 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT03629717?cond=NCT03629717&draw=2&rank=1.
  • Biomarker study of the antitumoral activity of denosumab in the pre-operative setting of early breast cancer (D-BIOMARK). 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT03691311?cond=NCT03691311&draw=2&rank=1.
  • Prevention of symptomatic skeletal events with denosumab administered every 4 weeks versus every 12 weeks. 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT02051218?cond=NCT02051218&draw=2&rank=1.
  • Denosumab and MRI breast imaging (Dmab). 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT02613416?cond=NCT02613416&draw=2&rank=1.
  • 4-Weekly versus 12-weekly administration of bone-targeted agents in patients with bone metastases (REaCT-BTA). 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT02721433?cond=NCT02721433&draw=2&rank=1.
  • Open-label access protocol of denosumab for subjects with advanced cancer. 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT01419717?cond=NCT01419717&draw=2&rank=1.
  • Fizazi K, Lipton A, Mariette X, et al. Randomized phase II trial of denosumab in patients with bone metastases from prostate cancer, breast cancer, or other neoplasms after intravenous bisphosphonates. JCO. 2009;27(10):1564–1571.
  • Fizazi K, Bosserman L, Gao G, et al. Denosumab treatment of prostate cancer with bone metastases and increased urine N-telopeptide levels after therapy with intravenous bisphosphonates: results of a randomized phase II trial. J Urol. 2009;182(2):509–516.
  • Open label extension to SRE studies in United Kingdom and Czech Republic only. 2014. Available from: https://clinicaltrials.gov/ct2/show/NCT00950911?cond=NCT00950911&draw=2&rank=1.
  • Lipton A, Siena S, Rader M, et al. Comparison of denosumab versus zoledronic acid (ZA) for treatment of bone metastases in advanced cancer patients: an integrated analysis of 3 pivotal trials. Ann Oncol. 2010;16:400.
  • Saad F, Brown J, Van Poznak C, et al. Incidence, risk factors, and outcomes of osteonecrosis of the jaw: integrated analysis from three blinded active-controlled phase III trials in cancer patients with bone metastases. Ann Oncol. 2012;23(5):1341–1347.
  • Dizdarevic S, McCready R, Vinjamuri S. Radium-223 dichloride in prostate cancer: proof of principle for the use of targeted alpha treatment in clinical practice. Eur J Nucl Med Mol Imaging. 2020;47(1):192–217.
  • García Vicente AM, Amo-Salas M, Cassinello Espinosa J, et al. Interim and end-treatment 18F-Fluorocholine PET/CT and bone scan in prostate cancer patients treated with radium 223 dichloride. Sci Rep. 2021;11(1):1–12.
  • Fournier PG, Stresing V, Ebetino FH, et al. How do bisphosphonates inhibit bone metastasis in vivo. Neoplasia. 2010;12(7):571–578.
  • Stresing V, Daubiné F, Benzaid I, et al. Bisphosphonates in cancer therapy. Cancer Lett. 2007;257(1):16–35.
  • Mori K, Le Goff B, Berreur M, et al. Human osteosarcoma cells express functional receptor activator of nuclear factor‐kappa B. J Pathol. 2007;211(5):555–562.
  • Armstrong AP, Miller RE, Jones JC, et al. RANKL acts directly on RANK‐expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate. 2008;68(1):92–104.
  • Zheng Y, Zhou H, Brennan K, et al. Inhibition of bone resorption, rather than direct cytotoxicity, mediates the anti-tumour actions of ibandronate and osteoprotegerin in a murine model of breast cancer bone metastasis. Bone. 2007;40(2):471–478.
  • Casimiro S, Mohammad KS, Pires R, et al. RANKL/RANK/MMP-1 molecular triad contributes to the metastatic phenotype of breast and prostate cancer cells in vitro. PLoS One. 2013;8(5):e63153.
  • Canon J, Bryant R, Roudier M, et al. RANKL inhibition combined with tamoxifen treatment increases anti-tumor efficacy and prevents tumor-induced bone destruction in an estrogen receptor-positive breast cancer bone metastasis model. Breast Cancer Res Treat. 2012;135(3):771–780.
  • Luo J, Yang Z, Ma Y, et al. LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med. 2016;22(5):539–546.
  • Casimiro S, Vilhais G, Gomes I, et al. The roadmap of RANKL/RANK pathway in cancer. Cells. 2021;10(8):1978.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.