827
Views
39
CrossRef citations to date
0
Altmetric
Original Article

Cadmium toxicity in crop plants and its alleviation by arbuscular mycorrhizal (AM) fungi: An overview

&

References

  • AbadAKJ, KharaJ. 2007. Effect of cadmium toxicity on the level of lipid peroxidation and antioxidative enzymes activity in wheat plants colonized by arbuscular mycorrhizal fungi. Pak J Biol Sci10(14): 2413–2417.
  • Abdel-LatifA. 2008. Cadmium induced changes in pigment content, ion uptake, proline content and phosphoenol carboxylase activity in Triticum aestivum seedlings. Aust J Basic Appl Sci2(1): 57–62.
  • AhmadP, NabiG, AshrafM. 2011. Cadmium-induced oxidative damage in mustard [Brassica juncea (L.) Czern. & Coss.] plants can be alleviated by salicyclic acid. South Afr J Bot77: 36–44.
  • AliaAS, MohantyP, MatysikJ. 2001. Effect of proline on the production of singlet oxygen. Amino Acids21: 195–200.
  • AlouiA, RecorbetG, GollotteA, RobertF, ValotB, Gianinazzi-PearsonV, et al. 2009. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Proteomics9: 420–433.
  • AndradeSAL, da SilveiraAPD, JorgeRA, de AbreuMF. 2008. Cadmium accumulation in sunflower plants influenced by arbuscular mycorrhiza. Int J Phytoremed10: 1–13.
  • AndradeSAL, da SilveiraAPD. 2008. Mycorrhiza influence on maize development under Cd stress and P supply. Braz J Plant Physiol20(1): 39–50.
  • AndradeSAL, JorgeRA, da SilveiraAPD. 2005. Cadmium effect on the association of jackbean (Canavalia ensiformis) and arbuscular mycorrhizal fungi. Sci Agric62(4): 389–394.
  • AnjumNA, UmarS, AhmadA, IqbalM. 2008. Responses of components of antioxidant system in moongbean genotypes to cadmium stress. Commun Soil Sci Plant Anal39: 2469–2483.
  • AnjumNA, UmarS, IqbalM, KhanNA. 2011. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate-glutathione cycle metabolism. Russ J Plant Physiol58(1): 92–99.
  • ArvindP, PrasadMNV. 2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.: A free floating freshwater macrophyte. Plant Physiol Biochem41: 391–397.
  • AssuncaoAGL, SchatH, AartsMGM. 2003. Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol159: 351–360.
  • AzconR, PerálvarezMC, BiróB, RoldánA, Ruíz-Lozano. 2009. Antioxidant activities and metal acquisition in mycorrhizal plants growing a heavy metal multi-contaminated soil amended with treated lignocellulosic agrowaste. App Soil Ecol41: 168–177.
  • BakerAJM, McGrathSP, ReevesDR, SmithJAC. 2000. Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: TerryN, BãnuelosG, editors. Phytoremediation of contaminated soils and water. Boca Raton, FL: CRC Press. pp. 171–188.
  • BalestrasseKB, BenavidesMP, GallegoSM, TomaroML. 2003. Effect of cadmium stress on nitrogen metabolism in nodules and roots of soybean plants. Funct Plant Biol30: 57–64.
  • BalestrasseKB, GallegoSM, BenavidesMP, TomaroML. 2005. Polyamines and proline are affected by cadmium stress in nodules and roots of soybean plants. Plant Soil270: 343–353.
  • BalestrasseKB, GallegoSM, TomaroML. 2004. Cadmium-induced senescence in nodules of soybean (Glycine max. L.) plants. Plant Soil262: 373–381.
  • BalestrasseKB, GallegoSM, TomaroML. 2006. Oxidation of the enzymes involved in nitrogen assimilation plays an important role in the cadmium-induced toxicity in soybean plants. Plant Soil284: 187–194.
  • BalestrasseKB, GardeyL, GallegoSM, TomaroML. 2001. Response of antioxidant defense system in soybean nodules and roots subjected to cadmium stress. Aust J Plant Physiol28: 497–504.
  • BashirF, Mahmooduzzafar, SiddiquiTO, IqbalM. 2007. The antioxidative response system in soybean plants exposed to deltamethrin, a synthetic pyrethroid insecticide. Environ Pollut147: 94–100.
  • BaviK, KholdebarinB, MoradshahiA. 2006. Effect of cadmium on some of the biochemical and physiological processes in bean plants. Am J Plant Physiol1(2): 177–184.
  • BecanaM, DaltonDA, MoranJF, Iturbe-OrmaetxeI, MatamorosMA, RubioMC. 2000. Reactive oxygen species and antioxidants in legume nodules. Physiol Plant109: 372–381.
  • BediniS, TurriniA, RigoC, ArgeseE, GiovannettiM. 2010. Molecular characterization and glomalin production of arbuscular mycorrhizal fungi colonizing a heavy metal polluted ash disposal island, downtown Venice. Soil Biol Biochem42: 758–765.
  • BenabdellahK, MerlosMA, Azcón-AguilarC, FerrolN. 2009. GintGRX1, the first characterized glomeromycotan glutaredoxin, is a multifunctional enzyme that responds to oxidative stress. Fungal Genet Biol46: 94–103.
  • BenavidesMP, GallegoSM, TomaroML. 2005. Cadmium toxicity in plants. Braz J Plant Physiol17(1): 21–34.
  • BibiM, HussainM. 2005. Effect of copper and lead on photosynthesis and plant pigments in black gram (Vigna mungo L.). Bull Environ Contam Toxicol74: 1126–1133.
  • BiroI, NemethT, TakacsT. 2009. Changes of parameters of infectivity and efficiency of different Glomus mosseae arbuscular mycorrhizal fungi strains in cadmium-loaded soils. Commun Soil Sci Plant Anal40: 227–239.
  • CarpenaRO, VázquezS, EstebanE, Fernández-PascualM, de FelipeMR, ZornozaP. 2003. Cadmium-stress in white lupin: Effects on nodule structure and functioning. Plant Physiol Biochem41: 911–919.
  • ChaffeiC, PageauK, SuzukiA, GouhiaH, GhorbelHM, Mascalaux-DaubresseC. 2004. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid strategy. Plant Cell Physiol45: 1681–1693.
  • ChenBD, ChristieP, LiXL. 2001. A modified glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere42: 185–192.
  • ChenYX, HeYF, YangY, YuYL, ZhengSJ, TianGM, et al. 2003. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils. Chemosphere50: 781–787.
  • ChengYL, SongCP. 2006. H2O2 homeostasis and signaling in plant cells. Sci China Series C Life Sci49(1): 1–11.
  • ChienHF, LinCC, WangJW, ChenCT, KaoCH. 2002. Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regul36: 41–47.
  • ChoUH, SohnJY. 2004. Cadmium induced changes in antioxidative systems, hydrogen peroxide content and lipid peroxidation in Arabidopsis thaliana. J Plant Biol47: 262–269.
  • CicatelliA, LinguaG, TodeschiniV, BiondiS, TorrigianiP, CastiglioneS. 2010. Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression. Ann Bot106: 791–802.
  • CieckoZ, KalembasaS, WyszkowskiM, RolkaE. 2004. The effect of elevated cadmium content in soil on the uptake of nitrogen by plants. Plant Soil Environ50(7): 283–294.
  • ClemensS, PalmgreenMG, KramerU. 2002. A long way ahead understanding and engineering plant metal accumulation. Trends Plant Sci7: 309–315.
  • ClemensS. 2006a. Evolution and function of phytochelatin synthases. J Plant Physiol163: 319–332.
  • ClemensS. 2006b. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochemie88: 1707–1719.
  • CobbettC, GoldsbroughP. 2002. Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol53: 159–182.
  • ConnS, GillihamM. 2010. Comparative physiology of elemental distributions in plants. Ann Bot105: 1081–1102.
  • CorderoB, LodeiroP, HerreroR, Esteban Sastre de VicenteM. 2004. Biosorption of cadmium by Fucus spiralis. Environ Chem1: 180–187.
  • DalCorsoG, FarinatiS, FuriniA. 2010. Regulatory networks of cadmium stress in plants. Plant Signal Behav5(6): 663–667.
  • DalCorsoG, FarinatiS, MaistriS, FuriniA. 2008. How plants cope with cadmium: Staking all on metabolism and gene expression. J Integr Plant Biol50(10): 1268–1280.
  • de la RosaG, Peralta-VideaJR, MontesM, ParsonsJG, Cano-AguileraI, Gardea-TorresdeyJL. 2004. Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyper accumulator desert plant species: ICP/OES and XAS studies. Chemosphere55: 1159–1168.
  • DixitV, PandeyV, ShyamR. 2001. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). J Exp Bot52: 1101–1109.
  • DjingovaR, KuleffI. 2000. Instrumental techniques for trace analysis. In: VernetJP, editor. Trace elements: Their distribution and effects in the environment. Amsterdam, United Kingdom: Elsevier Science Ltd. p.146.
  • DomínguezMD, GarcíaFC, RayaAC, SantiagoRT. 2010. Cadmium-induced oxidative stress and the response of the antioxidative defense system in Spartina densiflora. Physiol Plantarum139: 289–302.
  • DongL, Da-mingC, Xu-dongY, ChengZ. 2004. Research advance on the physiologically molecular mechanisms for plant heavy metal tolerance. J Zhejiang Univ (Agric Life Sci)30(4): 375–382.
  • DrazicG, MihailovicN, StojanovicZ. 2004. Cadmium toxicity: the effect on macro-and micro-nutrient contents in soybean seedlings. Biol Plant48(4): 605–607.
  • DuQ, ChenMX, ZhouR, CaoZY, ZhuZW, ShaoGS, et al. 2009. Cd toxicity and accumulation in rice plants vary with soil nitrogen status and their genotypic difference can be partly attributed to nitrogen uptake capacity. Rice Sci16: 283–291.
  • DubeBK, SinhaP, ShuklaK, ChatterjeeC, PandeyVK, RaiAD. 2009. Involvement of excess cadmium on oxidative stress and other physiological parameters of egg plant. J Plant Nutr32: 996–1004.
  • DurandTC, BaillifP, AlbéricP, CarpinS, LabelP, HausmanJF, et al. 2011. Cadmium and zinc are differentially distributed in Populus tremula x P. alba exposed to metal excess. Plant Biosyst145(2): 397–405.
  • Egharevba, OmoregieH. 2010. Effect of cadmium on seed viability on Vigna unguiculata. Ethnobot Leaf14: 413–419.
  • El-BeltagiHM, MohamedAA, RashedMM. 2010. Response of antioxidative enzymes to cadmium stress in leaves and roots of radish (Raphanus sativus L.). Not Sci Biol2(4): 76–82.
  • FaizanS, KausarS, PerveenR. 2011. Varietal differences for cadmium-induced seedling mortality, foliar toxicity symptoms, plant growth, proline and nitrate reductase activity in chickpea (Cicer arietinum L.). Biol Med3(2): 196–206.
  • FarooqiZR, IqbalMZ, KabirM, ShafiqM. 2009. Toxic effects of lead and cadmium on germination and seedling growth of Albizia lebbeck (L.) Benth. Pak J Bot41(1): 27–33.
  • FerreiraRR, FornazierRF, VitoĺiaAP, LeaPJ, AzevedoRA. 2002. Changes in antioxidant enzyme activities in soybean under cadmium stress. J Plant Nutr25: 327–342.
  • FinlayRD. 2008. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. J Exp Bot59(5): 1115–1126.
  • FornazierRF, FerreiraRR, VitoĺiaAP, MolinaSMG, LeaPJ, AzevedoRA. 2002. Effects of cadmium on antioxidant enzyme activities in sugarcane. Biol Plant45: 91–97.
  • GamaleroE, LinguaG, BertaG, GlickBK. 2009. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol55: 501–514.
  • GargN, AggarwalN. 2011. Effects of interactions between cadmium and lead on growth, nitrogen fixation, phytochelatins and glutathione production in mycorrhizal Cajanus cajan (L.) Millsp. J Plant Growth Reg. 30(3): 286–300.
  • GargN, BhandariP. 2012. Influence of cadmium stress and arbuscular mycorrhizal fungi on nodule senescence in Cajanus cajan (L.) Millsp. Int J Phytoremed14: 62–74.
  • GargN, ChandelS. 2010. Arbuscular mycorrhizal networks: Process and functions. A review. Agron Sustain Dev30: 581–599.
  • GargN, ChandelS. 2012. Role of arbuscular mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. J Plant Growth Regul31: 292–308.
  • GargN, KaurH. 2012. Influence of zinc on cadmium-induced toxicity in nodules of pigeonpea (Cajanus cajan L. Millsp.) inoculated with arbuscular mycorrhizal (AM) fungi. Acta Physiol Plant. 34(4): 1363–1380. 10.1007/s11738-012-0933-y.
  • GargN, ManchandaG. 2008. Effect of arbuscular mycorrhizal inoculation on salt induced nodule senescence in Cajanus cajan (L.) Millsp. (Pigeonpea). J Plant Growth Regul27: 115–124.
  • GargN, ManchandaG. 2009. ROS generation in plants: Boon or bane?Plant Biosyst143(1): 81–96.
  • GaurA, AdholeyaA. 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci86(4): 528–534.
  • GhnayaT, SlamaI, MessediD, GrignonC, GhorbelMH, AbdellyC. 2007. Effects of Cd2+ on K+, Ca2+ and N uptake in two halophytes Sesuvium portulacastrum and Mesembryanthemum crystallinum: consequences on growth. Chemosphere67: 72–79.
  • GillSS, TutejaN. 2011. Cadmium stress tolerance in crop plants. Plant Signal Behav6(2): 215–222.
  • GöhreV, PaszkowskiU. 2006. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta223: 1115–1122.
  • González-ChavezMC, Carrillo-GonzalezR, WrightSF, NicholsKA. 2004. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements. Environ Pollut130: 317–323.
  • González-GuerreroM, Azcon-AguilarC, FerrolN. 2006. GintABC1 and GintMT1 are involved in Cu and Cd homeostasis in GlomusintraradicesAbstracts of the 5th International conference on mycorrhiza, 23–27 July, Granada, Spain.
  • González-GuerreroM, BenabdllahK, FerrolN, Azcón-AguilarC. 2009. Mechanisms underlying heavy metal tolerance in arbuscular mycorrhizas. In: Azcón-AguilarC, BareaJM, GianinazziS, Gianinazzi-PearsonV, editors. Mycorrhizas-functional processes and ecological impact. Berlin: Springer-Verlag. pp. 107–122.
  • González-GuerreroM, CanoC, Azcón-AguilarC. 2007. Ferrrol N GintMT1 encodes a functional metallothionein in Glomus intraradices that responds to oxidative stress. Mycorrhiza17: 327–335.
  • GozubenliH. 2010. Seed vigour of maize grown on the contaminated soils by cadmium. Asian J Plant Sci9(3): 168–171.
  • GratãoPL, MonteiroCC, AntunesAM, PeresLEP, AzevedoRA. 2008. Acquired tolerance of tomato (Lycopersicon esculentum cv. Microtom) plants to cadmium induced stress. Ann Appl Biol153: 321–333.
  • HallJL. 2002. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot53: 1–11.
  • HatataMH, Abdel-AalEA. 2008. Oxidative stress and antioxidant defense mechanisms in response to cadmium treatments. Am-Euras J Agric Environ Sci4(6): 655–669.
  • JanouškováM, PavlíkováD. 2010. Cadmium immobilization in the rhizosphere of Arbuscular Mycorrhizal plants by the fungal extra radical mycelium. Plant Soil332: 511–520.
  • JavaidA. 2011. Importance of Arbuscular Mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. In: KhanMS, ZaidiA, GoelR, MussarratJ, editors. Bio management of metal-contaminated soils. Dordrecht Heidelberg, London, NY: Springer science. pp. 125–141.
  • JentschkeG, GodboldDL. 2000. Metal toxicity and ectomycorrhizas. Physiol Plant109: 107–116.
  • JonerEJ, BrionesR, LeyvalC. 2000. Metal-binding capacity of arbuscular-mycorrhizal mycelium. Plant Soil226(2): 227–234.
  • JonerEJ, LeyvalC. 2001. Time-course of heavy metal uptake in maize and clover as affected by root density and different mycorrhizal inoculations regimes. Biol Fertil Soils33: 351–357.
  • JoschimHJ, MakoiR, NdakidemiPA. 2009. The agronomic potential of vesicular-arbuscular mycorrhiza (AM) in cereals-legume mixtures in Africa. Afr J Microbial Res3(11): 664–675.
  • KapoorA, ViraraghavanT. 1995. Fungal biosorption - an alternative treatment option for heavy metal bearing waste waters: A review. Biores Technol53: 195–206.
  • KarimiA, KhodaverdilooH, SepehriM, SadaghianiMR. 2011. Arbuscular mycorrhizal fungi and heavy metal contaminated soils. Afr J Microbiol Res5(13): 1571–1576.
  • KatoM, IshikawaS, InagakiK, ChibaK, HayashiH, YanagisawaS, et al. 2010. Possible chemical forms of cadmium and varietal differences in cadmium concentrations in the phloem sap of rice plants (Oryza sativa L.). Soil Sci Plant Nutr56: 839–847.
  • KhadeSW, AdholeyaA. 2009. Arbuscular mycorrhizal association in plants growing on metal contaminated and non-contaminated soils adjoining Kanpur tanneries, Uttar Pradesh, India. Water Air Soil Pollut202: 45–56.
  • KirkhamMB. 2006. Cadmium in plants on polluted soils: Effects of soil factors hyperaccumulation and amendments. Geoderma137: 19–32.
  • KrupaZ, BaszyńskiT. 1995. Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions. Acta Physiol Plant17: 177–190.
  • KulaevaOA, TsyganovVE. 2011. Molecular genetic basis of cadmium tolerance and accumulation in higher plants. Russ J Genet: Appl Res1(5): 349–360.
  • KumarP, TewariRK, SharmaPN. 2008. Cadmium enhances generation of hydrogen peroxide and amplifies activities of catalase, peroxidase and superoxide dismutase in maize. J Agron Crop Sci194: 72–80.
  • LambersH, MougelC, JaillardB, HinsingerP. 2009. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil321: 83–115.
  • LanfrancoL, BolchiA, RosEC, OttonelloS, BonfanteP. 2002. Differential expression of a metallothionein gene during the presymbiotic versus the symbiotic phase of an arbuscular mycorrhizal fungus. Plant Physiol130: 58–67.
  • LanfrancoL, NoveroM, BonfanteP. 2005. The mycorrhizal fungus Gigaspora margarita possesses a Cu-Zn superoxide dismutase that is up-regulated during symbiosis with legume hosts. Plant Physiol137: 1319–1330.
  • LeonAM, PalmaJM, CorpasFJ, GomezM, Romero-PuertasMC, ChatterjeeD, et al. 2002. Antioxidative enzymes in cultivars of peppers plant with different sensitivity to cadmium. Plant Physiol Biochem40: 813–820.
  • LeyvalC, JonerEJ, del ValC, HaselwandterK. 2002. Potential of arbuscular mycorrhizal fungi for bioremediation. In: GianinazziS, SchüeppH, BareaJM, HaselwandterK, editors. Mycorrhizal technology in agriculture. Basel, Switzerland: Birkhaüser Verlag. pp. 175–186.
  • LeyvalC, TurnauK, HaselwandterK. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: Physiological, ecological and applied aspects. Mycorrhiza7: 139–153.
  • LinA, ZhangX, WongM, YeZ, LauL, WangY, et al. 2007. Increase of multimetal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health29: 473–481.
  • LinCC, ChenLM, LiuZH. 2005. Rapid effect of copper on lignin biosynthesis in soybean roots. Plant Sci168: 855–861.
  • LinguaG, FranchinC, TodeschiniV, CastiglioneS, BiondiS, BurlandoB, et al. 2008. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut153: 137–147.
  • LiuL-Z, GongZQ, ZhangYL, LiPJ. 2011. Growth, cadmium accumulation and physiology of Marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere21(3): 319–327.
  • LiuYG, WangX, ZengGM, QuD, GuJJ, ZhouM, et al. 2007. Cadmium-induced stress and response of the ascorbate-glutathione cycle in Bechmeria nivea (L.) Gaud. Chemosphere69: 99–107.
  • LombiE, ZhaoFJ, DunhamSJ, McGrathSP. 2000. Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi goesingense. New Phytol145: 11–20.
  • LuxA, MartinkaM, VaculikM, WhitePJ. 2011. Root responses to cadmium in the rhizosphere: A review. J Exp Bot62(1): 21–37.
  • MaksymiecW. 2007. Signaling responses in plant to heavy metal stress. Acta Physiol Plant29: 177–187.
  • MalekzadehP, KharaJ, FarshianS. 2007. Effect of arbuscular mycorrhiza (Glomus etunicatum) on some physiological growth parameters of tomato plant under copper toxicity in solution. Pak J Biol Sci10(8): 1326–1330.
  • MatamorosMA, DaltonDA, RamosJ, ClementeMR, RubioMC, BecanaM. 2003. Biochemistry and molecular biology of antioxidants in the Rhizobia legume symbiosis. Plant Physiol133: 499–509.
  • MetwallyA, SafronovaVI, BelimovAA, DietzKJ. 2005. Genotypic variation of the response to cadmium toxicity in Pisum sativum L. J Exp Bot56: 167–178.
  • MiransariM. 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol Adv29: 645–653.
  • MohammadiK, KhalesroS, SohrabiY, HeidariG. 2011. A Review: Beneficial effects of the mycorrhizal fungi for plant growth. J Appl Environ Biol Sci1(9): 310–319.
  • MolinaAS, NievasC, ChacaMVP, GoribottoF, GonzálezU, MarsáSM, et al. 2008. Cadmium-induced oxidative damage and antioxidative defense mechanism in Vigna mungo L. Plant Growth Regul56: 285–295.
  • MoloiMJ, van der WesthuizenAJ. 2006. The reactive oxygen species are involved in resistance responses of wheat to the Russian Wheat Aphid. J Plant Physiol163(11): 1118–1125.
  • MonteiroMS, SantosC, SoaresAMVM, MannRM. 2009. Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicol Environ Saf72: 811–818.
  • MuneerS, QadriTN, Mahmooduzaffar, SiddiqiTO. 2011. Cytogenetic and biochemical investigations to study the response of Vigna radiata to cadmium stress. Afr J Plant Sci5(3): 183–192.
  • NagajyotiPC, LeeKD, SreekanthTVM. 2010. Heavy metals, occurrence and toxicity for plants: A review. Environ Chem Lett8: 199–216.
  • NocitoFF, LancilliC, GiacominiB, SacchiGA. 2007. Sulphur metabolism and cadmium stress in higher plants. Plant Stress1(2): 142–156.
  • Ortega-VillasanteC, Rellan-AlvarezR, del CampoFF, Carpena-RuizRO, HernándezLE. 2005. Cellular damage induced by cadmium and mercury in Medicago sativa. J Exp Bot56(418): 2239–2251.
  • OuziadF, HidebrandtU, SchmelzerE, BotheH. 2005. Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol162: 634–649.
  • PalR, RaiJPN. 2010. Phytochelatins: Peptides involved in heavy metal detoxification. Appl Biochem Biotech160(3): 945–963.
  • PereiraGJG, MolinaSMG, LeaPJ, AzevedoRA. 2002. Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea. Plant Soil239: 123–132.
  • Perfus-BarbeochL, LeonhardtN, VavaddeurA, ForestierC. 2002. Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. Plant J32: 539–548.
  • PuppoA, GrotenK, BastianF, CarzanigaR, SoussiM, LucasMM, et al. 2005. Legume nodule senescence: Roles for redox and hormone signaling in the orchestration of the natural ageing process. New Phytol165: 683–701.
  • QadirS, QureshiMI, JavedS, AbdinMZ. 2004. Genotypic variation in phytoremediation potential of Brassica juncea cultivars exposed to Cd stress. Plant Sci167: 1171–1181.
  • RahmanianM, HabibK, YounesRD, MirhasanRS. 2011. Effects of heavy metal resistant soil microbes inoculation and soil Cd concentration on growth and metal uptake of millet, couch grass and alfalfa. Afr J Microbiol Res5(4): 403–410.
  • RamosI, EstebanE, LucenaJJ, GarateA. 2002. Cadmium uptake and subcellular distribution in plants of Lactica sp. Cd-Mn interaction. Plant Sci162: 761–767.
  • RedonPO, BeguiristainT, LeyvalC. 2008. Influence of Glomus intraradices on Cd partitioning in a pot experiment with Medicago truncatula in four contaminated soils. Soil Biol Biochem40: 2710–2712.
  • Rivera-BecerrilF, CalantzisC, TurnauK, CaussanelJ, BelimovAA, GianinazziS, et al. 2002. Cadmium accumulation and buffering of cadmium-induced stress by arbuscular mycorrhiza in three Pisum sativum L. genotypes. J Exp Bot53(371): 1177–1185.
  • Rivera-BecerrilF, MetwallyA, Martin-LuaurentF, TuinenDV, DietzK, GianinaziS, et al. 2005. Molecular responses to cadmium in roots of Pisum sativum L. Water Air Soil Pollut168: 171–186.
  • Romero-PuertasMC, Rodriguez-SerranoM, CorpasFJ, GomézM, del RioLA, SandalioLM.2004. Cadmium-induced subcellular accumulation of O2·– and H2O2 in pea leaves. Plant Cell Environ27: 1122–1134.
  • SaltDE, PrinceRC, PickeringIJ, RaskinI. 1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol109: 1427–1433.
  • Sánchez ViverosG, Carrillo GonzálezR, Martínez GarzaA, González-ChávezMC. 2004. Tolerancia adaptativa de los hongos micorrízicos arbusculares al crecer en sustrato contaminado con As y Cu. Rev Int Contam Ambient20: 147–158.
  • SandalioLM, DalurzoHC, GomezM, Romero-PuertasMC, del RioLA. 2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot52(364): 2115–2126.
  • Sanitá di ToppiL, GabbrielliR. 1999. Response to cadmium in higher plants. Environ J Exp Bot41: 105–130.
  • SaraswatS, RaiJPN. 2011. Mechanism of metal tolerance and detoxification in mycorrhizal fungi. In: KhanMS, ZaidiA, GoelR, MussarratJ, editors. Biomanagement of metal-contaminated soils. The Netherlands: Springer Science. pp. 225–240.
  • SbartaiH, RouabhiR, SbartaiI, BerrebbahH, DjebarRM. 2008. Induction of anti-oxidative enzymes by cadmium stress in tomato (Lycopersicon esculentum). Afr J Plant Sci2(8): 72–76.
  • ScheibleWR, MorcuendeR, CzechowskiT, FritzC, OsunaD, Palacios-RojasN, et al. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiol136: 2483–2499.
  • SchützendübelA, PolleA. 2002. Plant responses to abiotic stresses: Heavy metal induced oxidative stress and protection by mycorrhization. J Exp Bot53(372): 1351–1365.
  • SchützendübelA, SchwanzP, TeichmannT, GrossK, Langenfeld-HeyserR, GoldboldDL, et al. 2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol127: 887–898.
  • ShahK. 2011. Cadmium metal detoxification and hyperaccumulators. In: SherametiI, VarmaA, editors. Detoxification of heavy metals. Berlin: Soil Biology Springer-Verlag. pp. 181–203.
  • SharmaP, DubeyRS. 2004. Ascorbate peroxidase from rice seedlings: Properties of enzyme isoforms, effects of stresses and protective roles of osmolytes. Plant Sci167: 541–550.
  • SharmaSS, DietzK. 2006. The significance of amino acids and amino acid derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot57(4): 711–726.
  • SiddiquiS, MeghvansiMK, WaniMA, JabeelF. 2009. Evaluating cadmium toxicity in the root meristem of Pisum sativum L. Acta Physiol Plant31: 531–536.
  • SoaresCRFS, SiqueiraJO. 2008. Mycorrhiza and phosphate protection of tropical grass species against heavy metal toxicity in multi-contaminated soils. Biol Fertil Soils44: 833–841.
  • SomashekaraiahBV, PadmajaK, PrasadARK. 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorophyll degradation. Physiol Plant85: 85–89.
  • Souza VL. 2007. Expressão gênica, respostas morfo-fisioló-gicas e morte cellular induzidas porcádmio em Genipa americana L. (Rubiaceae), M.Sc. Dissertation, Ilhéus, Universidade Estadual de Santa Cruz.
  • SrivastavaR, KhanR, ManzoorN. 2011. Mahmooduzzafar. Responses of cadmium exposures on growth, physio-biochemical characteristics and the antioxidative defense system of soybean (Glycine max L.). J Phytol3(10): 20–25.
  • StommelM, MannP, FrankenP. 2001. EST-library construction using spore RNA of the arbuscular mycorrhizal fungus Gigaspora rosea. Mycorrhiza10: 281–285.
  • SunQ, YeZH, WangXR, WongMH. 2007. Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in cadmium hyperaccumulator Sedum alfredii. J Plant Physiol164(11): 1489–1498.
  • TamásL, ValentovičouáK, HaluškováL, HuttováJ, MistríkI. 2009. Effect of cadmium on the distribution of hydroxyl radical superoxide and hydrogen peroxide in barley root tip. Protoplasma236: 67–72.
  • ThomineS, WangR, WazardJM, CrawfordNM, SchroederJI. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci USA97: 4991–4996.
  • TrottaA, FalaschiP, CornaraL, MingantiV, FusconiA, DravaG, et al. 2006. Arbuscular mycorrhizal increase in the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L. Chemosphere65: 74–81.
  • TurnauK, JurkiewiczA, LinguaG, BareaJM, Gianinazzi-PearsonV. 2005. Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal polluted sites. In: PrasadMNV, SajwanD, RaviS, editors. Trace elements in the environment; Biogeochemistry, biotechnology and bioremediation. Boca Raton, FL: CRS Press/Lewis Publishers. pp. 235–252.
  • UpadhyayaH, PandaSK, BhattacharjeeMK, DuttaS. 2010. Role of arbuscular mycorrhiza in heavy metal tolerance in plants: Prospects for phytoremediation. J Phytol2(7): 16–27.
  • VallinoM, MassaN, LuminiE, BianciottoV, BertaG, BonfanteP. 2006. Assessment of arbuscular mycorrhizal fungi diversity in roots of Solidago gigantean growing in a polluted soil in Northern Italy. Environ Microbiol8: 971–983.
  • Van AsscheF, ClijstersH. 1990. Effects of metals on enzyme activity in plants. Plant Cell Environ13: 195–206.
  • VazquezS, GoldsbroughP, CarpenaRO. 2009. Comparative analysis of the contribution of phytochelatins to cadmium and arsenic tolerance in soybean and white lupin. Plant Physiol Biochem47: 63–67.
  • VermaS, DubeyRS. 2002. Influence of lead toxicity on photosynthetic pigments, lipid peroxidation and activities of antioxidant enzymes in rice plants. Ind J Agric Biochem15: 17–22.
  • Vogel-MikušK, DrobneD, RegvarM. 2005. Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonization of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environ Pollut133: 233–242.
  • WahidA, ArshadM, FarooqM. 2009. Cadmium phytotoxicity: responses, mechanisms and mitigation strategies. In: LichtfouseE, editor. Advances in sustainable agriculture-book series. Vol. 1. The Netherlands: Springer. pp. 371–403.
  • WahidA, GhaniA, AliI, AshrafMY. 2007. Effects of cadmium on carbon and nitrogen assimilation in shoots of mungbean (Vigna radiata L. Wilczek) seedlings. J Agron Crop Sci193: 357–365.
  • WangL, ZhouQ, DingL, SunY. 2008a. Effect of cadmium toxicity on nitrogen metabolism in leaves of Solanum nigrum L. as a newly found cadmium hyperaccumulator. J Hazd Mat154: 818–825.
  • WangZ, ZhangYX, HuangZB, HuangL. 2008b. Antioxidant response of metal-accumulator and non-accumulator plants under cadmium stress. Plant Soil310: 137–149.
  • WaniPA, KhanMS, ZaidiA. 2008. Effects of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol81: 152–158.
  • WaschkeA, SiehD, TamasloukhtM, FischerK, MannP, FrankenP. 2006. Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza17: 1–10.
  • WeissenhornI, LeyvalC. 1995. Root colonization of maize by a Cd-sensitive and a Cd-tolerant Glomus mosseae and cadmium uptake in sand culture. Plant Soil175: 233–238.
  • WongMK, ChuanGK, KohLL, AngKP, HewCS. 1984. The uptake of cadmium by Brassica chinensis and its effect on plant zinc and iron distribution. Environ Exp Bot24: 189–195.
  • WrightSF, UpadhyayaA. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Sci198: 97–107.
  • WuFB, DongJ, JiaG, ZhengS, ZhangGP. 2006. Genotypic difference in the responses of seedling growth and Cd toxicity in rice (Oryza sativa L.). Agric Sci China5: 68–76.
  • WuFY, YeZH, WuSC, WongMH. 2007. Metal accumulation and arbuscular mycorrhizal status in metallicolous and non metallicolous populations of Pteris vittata L. and Sedum alfredii Hance. Planta226: 1363–1378.
  • YangHY, ShiGX, XuQS, WangHX. 2011. Cadmium effects on mineral nutrition and stress-related indices in Potamogeton crispus. Russ J Plant Physiol58(2): 253–260.
  • YoshiharaT, HodoshimaH, MiyanoY, ShojiK, ShimadaH, GotoF. 2006. Cadmium inducible Fe deficiency responses observed from macro and molecular views in tobacco plants. Plant Cell Rep25: 365–373.
  • YounisM. 2007. Responses of Lablab purpureus-Rhizobium symbiosis to heavy metals in pot and field experiments. World J Agric Sci3(1): 111–122.
  • ZenginFK, MunzurogluO. 2006. Toxic effects of cadmium (Cd++) on metabolism of sunflower (Helianthus annus L.) seedlings. Acta Agric Scand56: 224–229.
  • ZhangX, LinA, ChenB, WangY, SmithSE, SmithFA. 2006. Effects of Glomus mosseae on the toxicity of heavy metals to Vicia faba. J Environ Sci18(4): 721–726.
  • ZhengG, LvHP, GaoS, WangSR. 2010. Effects of cadmium on growth and antioxidant responses in Glycyrrhizae uralensis seedlings. Plant Soil Environ56(11): 508–515.
  • ZhuYG, ChristieP, LaidlawAS. 2001. Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere42: 193–199.
  • ZornozaP, VázquezS, EstebanE, Fernández-PascualM, CarpenaR. 2002. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol Biochem40: 1003–1009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.