174
Views
3
CrossRef citations to date
0
Altmetric
Developmental Biology of Reproductive Structures

Communicating across generations: The Bsister language

, , &

REFERENCES

  • Alvarez-BuyllaER, PelazS, LiljegrenSJ, GoldSE, BurgeffC, DittaGS, et al. 2000. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc Nat Acad Sci USA97: 5328–5333.
  • AngenentGC, FrankenJ, BusscherM, van DijkenA, van WentJL, DonsHJM, et al. 1995. A novel class of MADS-box genes is involved in ovule development in petunia. Plant Cell7: 1569–1582.
  • BeckerA, KaufmannK, FreialdenhovenA, VincentC, LiMA, SaedlerH, TheißenG. 2002. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol Genet Genom266: 942–950.
  • BeckerA, TheißenG. 2003. The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol29: 464–489.
  • BeckerA, WinterKU, MeyerB, SaedlerH, TheißenG. 2000. MADS-box gene diversity in seed plants 300 million years ago. Mol Biol Evol17: 1425–1434.
  • BencivengaS, ColomboL, MasieroS. 2011. Crosstalk between the sporophyte and the megagametophyte during ovule development. Sex. Plant Reprod24: 113–121.
  • CausierB, Schwarz-SommerS, DaviesB. 2010. Floral organ identity: 20 years of ABCs. Semin Cell Dev Biol21: 73–79.
  • CoenES, MeyerowitzEM. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature353: 31–37.
  • ColomboL, FrankenJ, KoetjeE, van WentJ, DonsHJM, AngenentGC, van TunenAJ. 1995. The petunia MADS-box gene FBP11 determines ovule identity. Plant Cell7: 1859–1868.
  • ColomboL, FrankenJ, Van der KrolAR, WittichyPE, DonsyHJM, AngenentGC. 1997. Downregulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell9: 703–715.
  • ChenG, DengW, PengF, TruksaM, SingerS, SnyderCL, et al. 2013. Brassica napus TT16 homologs with different genomic origins and expression levels encode proteins that regulate a broad range of endothelium-associated genes at the transcriptional level. Plant J74: 663–677.
  • de FolterS, ShchennikovaAV, FrankenJ, BusscherM, BaskarR, GrossniklausU, et al. 2006. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J47: 934–946.
  • DengW, ChenG, PengF, TruksaM, SnyderCL, WeselakeRJ. 2012. Transparent testa16 plays multiple roles in plant development and is involved in lipid synthesis and embryo development in canola. Plant Physiol160: 978–989. Erratum in: Plant Physiol 161: 1584.
  • DittaG, PinyopichA, RoblesP, PelazS, YanofskyMF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol14: 1935–1940.
  • Egea-CortinesM, SaedlerH, SommerH. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA DEF-ICIENS and GLOBOSA is involved in the control of floralarchitecture in Anthirrinum majus. EMBO J18: 5370–5379.
  • ErdmannR, GramzowL, MelzerR, TheissenG, BeckerA. 2010. GORDITA (AGL63) is a young paralog of the Arabidopsis thaliana B(sister) MADS box gene ABS (TT16) that has undergone neofunctionalization. Plant J63: 914–924.
  • FavaroR, PinyopichA, BattagliaR, KooikerM, BorghiL, DittaG, et al. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell15: 2603–2611.
  • KaufmannK, AnfangN, SaedlerH, TheissenG. 2005. Mutant analysis, protein-protein interactions and subcellular localization of the Arabidopsis Bsister (ABS) protein. Mol Genet Genom274: 103–118.
  • LeeDS, ChenLJ, LiCY, LiuY, TanXL, LuBR, et al. 2013. The Bsister MADS gene FST determines ovule patterning and development of the zygotic embryo and endosperm. PLoS One8: e58748.
  • LovisettoA, Flavia GuzzoF, BusattoN, CasadoroG. 2013. Gymnosperm B-sister genes may be involved in ovule/seed development and, in some species, in the growth of fleshy fruit-like structures. Ann Bot: 1–10, https://doi.org/doi:10.1093/aob/mct124.
  • LovisettoA, GuzzoF, TadielloA, ToffaliK, FavrettoA, CasadoroG. 2012. Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits. Mol Biol Evol29: 409–419.
  • MaH, YanofskyMF, MeyerowitzEM. 1991. AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev5: 484–495.
  • MelzerR, WangYQ, TheißenG. 2010. The naked and the dead: The ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol21: 118–128.
  • MizzottiC, MendesMA, CaporaliE, SchnittgerA, KaterMM, BattagliaR, ColomboL. 2012. The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J70: 409–420.
  • MunsterT, PahnkeJ, Di RosaA, KimJT, MartinW, SaedlerH, et al. 1997. Floral homeotic genes were recruited from homologous MADS-box genes preexisting in the common ancestor of ferns and seed plants. Proc Natl Acad Sci USA94: 2415–2420.
  • NesiN, DebeaujonI, JondC, StewartAJ, JenkinsGI, CabocheM, LepiniecL. 2002. The TRANSPARENT TESTA16 locus encodes the ARABIDOPSIS BSISTER MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell14: 2463–2479.
  • Nougalli TonacoIA, BorstJW, de VriesSC, AngenentGC, ImminkRG. 2006. In vivo imaging of MADS-box transcription factor interactions. J Exp Bot57: 33–42.
  • NowackMK, UngruA, BjerkanKN, GriniPE, SchnittgerA. 2010. Reproductive cross-talk: Seed development in flowering plants. Biochem Soc Trans38: 604–612.
  • PelazS, DittaGS, BaumannE, WismanE, YanofskyMF. 2000. B and C organ identity functions require SEPALLATA MADS-box genes. Nature405: 200–203.
  • PinyopichA, DittaGS, SavidgeB, LiljegrenSJ, BaumannE, WismanE, YanofskyMF. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature424: 85–88.
  • PrasadK, AmbroseBA. 2010. Shaping up the fruit: Control of fruit size by an Arabidopsis B-sister MADS-box gene. Plant Signal Beha5: 899–902.
  • PrasadK, ZhangX, TobónE, AmbroseBA. 2010. The Arabidopsis B-sister MADS-box protein, GORDITA, represses fruit growth and contributes to integument development. Plant J62: 203–214.
  • RiechmannJL, WangM, MeyerowitzEM. 1996. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res24: 3134–3141.
  • SchneitzK, HulskampM, KopczakSD, PruittRE. 1997. Dissection of sexual organ ontogenesis: A genetic analysis of ovule development in Arabidopsis thaliana. Development124: 1367–1376.
  • Schwarz-SommerZ, HueI, HujiserP, FlorPJ, HansenR, TetensF, et al. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene DEFICIENS: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J11: 251–263.
  • TheißenG. 2000. Shattering developments. Nature404: 711–713.
  • TheißenG, KimJ, SaedlerH. 1996. Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol43: 484–516.
  • TheiβenG, SaedlerH. 2001. Plant biology: Floral quartets. Nature409: 469–471.
  • WangYQ, MelzerR, TheissenG. 2010. Molecular interactions of orthologues of floral homeotic proteins from the gymnosperm Gnetum gnemon provide a clue to the evolutionary origin of ‘floral quartets’. Plant J64: 177–190.
  • YamadaK, SaraikeT, ShitsukawaN, HirabayashiC, TakumiS, MuraiK. 2009. Class D and B(sister) MADS-box genes are associated with ectopic ovule formation in the pistil-like stamens of alloplasmic wheat (Triticum aestivum L.). Plant Mol Biol71: 1–14.
  • YangX, WuF, LinX, DuX, ChongK, GramzowL, et al. 2012. Live and let die – The B(sister) MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa). PLoS One712: e51435.
  • YinLL, XueHW. 2012. The MADS transcription factor regulates the degradation of the nucellus and the nucellar projection during rice seed development. Plant Cell24: 1049–1065.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.