219
Views
6
CrossRef citations to date
0
Altmetric
Developmental Biology of Reproductive Structures

Protein interactions guiding carpel and fruit development in Arabidopsis

, , &

REFERENCES

  • AbeM, KobayashiY, YamamotoS, DaimonY, YamaguchiA, IkedaY, et al. 2005. FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science309: 1052–1056.
  • AlvarezJ, SmythDR. 2002. Crabs claw and Spatula genes regulate growth and pattern formation during gynoecium development in Arabidopsisthaliana. Int J Plant Sci163: 17–41.
  • Alvarez-BuyllaER, BenítezM, Corvera-PoiréA, Chaos CadorÁ, de FolterS, Gamboa de BuenA, et al. 2010. Flower development. The Arabidopsis Book8: e0127. 10.1199/tab.0127.
  • AmoutziasGD, RobertsonDL, Van de PeerY, OliverSG. 2008. Choose your partners: Dimerization in eukaryotic transcription factors. Trends Biochem Sci33: 220–229.
  • Arabidopsis Interactome Mapping Consortium2011. Evidence for network evolution in an Arabidopsis interactome map. Science333: 601–607.
  • AzhakanandamS, Nole-WilsonS, BaoF, FranksRG. 2008. SEUSS and AINTEGUMENTA mediate patterning and ovule initiation during gynoecium medial domain development. Plant Physiol146: 1165–1181.
  • Bar-YamY, HarmonD, de BivortB. 2009. Systems biology. Attractors and democratic dynamics. Science323: 1016–1017.
  • BowmanJL, SmythDR, MeyerowitzEM. 1989. Genes directing flower development in Arabidopsis. Plant cell1: 37–52.
  • BowmanJL, SmythDR, MeyerowitzEM. 2012. The ABC model of flower development: Then and now. Development139: 4095–4098.
  • BrambillaV, BattagliaR, ColomboM, MasieroS, BencivengaS, KaterMM, et al. 2007. Genetic and molecular interactions between BELL1 and MADS box factors support ovule development in Arabidopsis. Plant cell19: 2544–2556.
  • BraunP, AubourgS, Van LeeneJ, De JaegerG, LurinC. 2013. Plant protein interactomes. Annu Rev Plant biol64: 161–187.
  • BraunP, GingrasAC. 2012. History of protein–protein interactions: From egg-white to complex networks. Proteomics12: 1478–1498.
  • Calderon VillalobosLI, LeeS, De OliveiraC, IvetacA, BrandtW, ArmitageL, et al. 2012. A combinatorial TIR1/AFB–Aux/IAA co-receptor system for differential sensing of auxin. Nat Chem Biol8: 477–485.
  • CausierB, Schwarz-SommerZ, DaviesB. 2010. Floral organ identity: 20 years of ABCs. Semin Cell Develop Biol21: 73–79.
  • CoenES, MeyerowitzEM. 1991. The war of the whorls: Genetic interactions controlling flower development. Nature353: 31–37.
  • ColomboL, BattagliaR, KaterMM. 2008. Arabidopsis ovule development and its evolutionary conservation. Trends Plant Sci13: 444–450.
  • ColomboL, FrankenJ, KoetjeE, van WentJ, DonsHJ, AngenentGC, et al. 1995. The petunia MADS box gene FBP11 determines ovule identity. Plant cell7: 1859–1868.
  • CrawfordBC, YanofskyMF. 2011. HALF FILLED promotes reproductive tract development and fertilization efficiency in Arabidopsisthaliana. Development138: 2999–3009.
  • de FolterS, AngenentGC. 2006. Trans meets cis in MADS science. Trends Plant Sci11: 224–231.
  • de FolterS, ImminkRG, KiefferM, ParenicovaL, HenzSR, WeigelD, et al. 2005. Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant cell17: 1424–1433.
  • de FolterS, ShchennikovaAV, FrankenJ, BusscherM, BaskarR, GrossniklausU, et al. 2006. A Bsister MADS-box gene involved in ovule and seed development in petunia and Arabidopsis. Plant J47: 934–946.
  • DharmasiriN, DharmasiriS, EstelleM. 2005. The F-box protein TIR1 is an auxin receptor. Nature435: 441–445.
  • DittaG, PinyopichA, RoblesP, PelazS, YanofskyMF. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Current Biol14: 1935–1940.
  • Egea-CortinesM, SaedlerH, SommerH. 1999. Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J18: 5370–5379.
  • FagerlundR, MelenK, KinnunenL, JulkunenI. 2002. Arginine/lysine-rich nuclear localization signals mediate interactions between dimeric STATs and importin alpha 5. J Biol Chem277: 30072–30078.
  • FarnhamPJ. 2009. Insights from genomic profiling of transcription factors. Nat Rev Genet10: 605–616.
  • FavaroR, PinyopichA, BattagliaR, KooikerM, BorghiL, DittaG, et al. 2003. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant cell15: 2603–2611.
  • FerrandizC, LiljegrenSJ, YanofskyMF. 2000. Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science289: 436–438.
  • FerrarioS, ImminkRG, AngenentGC. 2004. Conservation and diversity in flower land. Curr Opin Plant Biol7: 84–91.
  • FranksRG, WangC, LevinJZ, LiuZ. 2002. SEUSS, a member of a novel family of plant regulatory proteins, represses floral homeotic gene expression with LEUNIG. Development129: 253–263.
  • FriedenC. 1971. Protein–protein interaction and enzymatic activity. Annu Rev of Biochemistry40: 653–696.
  • GehringWJ, IkeoK. 1999. Pax 6: Mastering eye morphogenesis and eye evolution. Trends Genet15: 371–377.
  • GirinT, PaicuT, StephensonP, FuentesS, KornerE, O'BrienM, et al. 2011. INDEHISCENT and SPATULA interact to specify carpel and valve margin tissue and thus promote seed dispersal in Arabidopsis. Plant Cell23: 3641–3653.
  • GrafT, EnverT. 2009. Forcing cells to change lineages. Nature462: 587–594.
  • GramzowL, TheissenG. 2010. A Hitchhiker's guide to the MADS world of plants. Genome Biol11: 214.
  • GregisV, AndresF, SessaA, GuerraRF, SimoniniS, MateosJL, et al. 2013. Identification of pathways directly regulated by SHORT VEGETATIVE PHASE during vegetative and reproductive development in Arabidopsis. Genome Biol14: R56.
  • GregisV, SessaA, ColomboL, KaterMM. 2008. AGAMOUS–LIKE24 and SHORT VEGETATIVE PHASE determine floral meristem identity in Arabidopsis. Plant J56: 891–902.
  • GregisV, SessaA, Dorca-FornellC, KaterMM. 2009. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes. Plant J60: 626–637.
  • GremskiK, DittaG, YanofskyMF. 2007. The HECATE genes regulate female reproductive tract development in Arabidopsisthaliana. Development134: 3593–3601.
  • GroszmannM, PaicuT, AlvarezJP, SwainSM, SmythDR. 2011. SPATULA and ALCATRAZ, are partially redundant, functionally diverging bHLH genes required for Arabidopsis gynoecium and fruit development. Plant J68: 816–829.
  • GuQ, FerrandizC, YanofskyMF, MartienssenR. 1998. The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development125: 1509–1517.
  • HardtkeCS, BerlethT. 1998. The Arabidopsis gene MONOPTEROS encodes a transcription factor mediating embryo axis formation and vascular development. EMBO J17: 1405–1411.
  • HerskowitzI. 1985. Master regulatory loci in yeast and lambda. Cold Spring Harbor Symp Quant Biol50: 565–574.
  • HillK, WangH, PerrySE. 2008. A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components. Plant J53: 172–185.
  • HonmaT, GotoK. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature409: 525–529.
  • ImminkRG, PoseD, FerrarioS, OttF, KaufmannK, ValentimFL, et al. 2012. Characterization of SOC1's central role in flowering by the identification of its upstream and downstream regulators. Plant Physiol160: 433–449.
  • ImminkRG, TonacoIA, de FolterS, ShchennikovaA, van DijkAD, Busscher-LangeJ, et al. 2009. SEPALLATA3: The “glue” for MADS box transcription factor complex formation. Genome Biol10: R24.
  • JaegerKE, WiggePA. 2007. FT protein acts as a long-range signal in Arabidopsis. Current Biol17: 1050–1054.
  • KadonagaJT. 2004. Regulation of RNA polymerase II transcription by sequence-specific DNA binding factors. Cell116: 247–257.
  • KaufmannK, AnfangN, SaedlerH, TheissenG. 2005. Mutant analysis, protein–protein interactions and subcellular localization of the Arabidopsis B sister (ABS) protein. Mol Genet Genomics274: 103–118.
  • KaufmannK, MuinoJM, JaureguiR, AiroldiCA, SmaczniakC, KrajewskiP, et al. 2009. Target genes of the MADS transcription factor SEPALLATA3: Integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol7: e1000090.
  • KaufmannK, PajoroA, AngenentGC. 2010a. Regulation of transcription in plants: Mechanisms controlling developmental switches. Nat Rev Genet11: 830–842.
  • KaufmannK, WellmerF, MuinoJM, FerrierT, WuestSE, KumarV, et al. 2010b. Orchestration of floral initiation by APETALA1. Science328: 85–89.
  • KepinskiS, LeyserO. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature435: 446–451.
  • KlemmJD, SchreiberSL, CrabtreeGR. 1998. Dimerization as a regulatory mechanism in signal transduction. Annu Rev Immunol16: 569–592.
  • KoikeM, ReedLJ, CarrollWR. 1960. alpha-Keto acid dehydrogenation complexes. I. Purification and properties of pyruvate and alpha-ketoglutarate dehydrogenation complexes of Escherichia coli. J Biol Chem235: 1924–1930.
  • KrizekBA, FletcherJC. 2005. Molecular mechanisms of flower development: An armchair guide. Nat Rev Genet6: 688–698.
  • LarssonE, FranksRG, SundbergE. 2013. Auxin and the Arabidopsisthaliana gynoecium. J Exp Bot64: 2619–2627.
  • LeeTI, YoungRA. 2000. Transcription of eukaryotic protein-coding genes. Annu Rev Genet34: 77–137.
  • LiljegrenSJ, DittaGS, EshedY, SavidgeB, BowmanJL, YanofskyMF. 2000. SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature404: 766–770.
  • LiljegrenSJ, RoederAH, KempinSA, GremskiK, OstergaardL, GuimilS, et al. 2004. Control of fruit patterning in Arabidopsis by INDEHISCENT. Cell116: 843–853.
  • LiuC, ThongZ, YuH. 2009a. Coming into bloom: The specification of floral meristems. Development136: 3379–3391.
  • LiuC, XiW, ShenL, TanC, YuH. 2009b. Regulation of floral patterning by flowering time genes. Developmental cell16: 711–722.
  • LiuZ, FranksRG, KlinkVP. 2000. Regulation of gynoecium marginal tissue formation by LEUNIG and AINTEGUMENTA. Plant Cell12: 1879–1892.
  • Marsch-MartínezN, WuW, de FolterS. 2011. The MADS symphonies of transcriptional regulation. Front Plant Sci2, 26–26.
  • McGonigleB, BouhidelK, IrishVF. 1996. Nuclear localization of the ArabidopsisAPETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev10: 1812–1821.
  • MeyerowitzEM. 2002. Plants compared to animals: The broadest comparative study of development. Science295: 1482–1485.
  • MizzottiC, MendesMA, CaporaliE, SchnittgerA, KaterMM, BattagliaR, et al. 2012. The MADS box genes SEEDSTICK and ARABIDOPSIS Bsister play a maternal role in fertilization and seed development. Plant J70: 409–420.
  • MurreC, McCawPS, VaessinH, CaudyM, JanLY, JanYN, et al. 1989. Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell58: 537–544.
  • NagpalP, EllisCM, WeberH, PloenseSE, BarkawiLS, GuilfoyleTJ, et al. 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development132: 4107–4118.
  • NarlikarGJ, FanHY, KingstonRE. 2002. Cooperation between complexes that regulate chromatin structure and transcription. Cell108: 475–487.
  • NiessingD, Rivera-PomarR, La RoseeA, HaderT, SchockF, PurnellBA, et al. 1997. A cascade of transcriptional control leading to axis determination in Drosophila. J Cell Physiol173: 162–167.
  • Nole-WilsonS, KrizekBA. 2006. AINTEGUMENTA contributes to organ polarity and regulates growth of lateral organs in combination with YABBY genes. Plant Physiol141: 977–987.
  • ParenicovaL, de FolterS, KiefferM, HornerDS, FavalliC, BusscherJ, et al. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: New openings to the MADS world. Plant cell15: 1538–1551.
  • PelazS, DittaGS, BaumannE, WismanE, YanofskyMF. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature405: 200–203.
  • PelazS, Tapia-LopezR, Alvarez-BuyllaER, YanofskyMF. 2001. Conversion of leaves into petals in Arabidopsis. Curr Biol11: 182–184.
  • PinyopichA, DittaGS, SavidgeB, LiljegrenSJ, BaumannE, WismanE, et al. 2003. Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature424: 85–88.
  • Reyes-OlaldeJI, Zuñiga-MayoVM, Chávez MontesRA, Marsch-MartínezN, de FolterS. 2013. Inside the gynoecium: At the carpel margin. Trends Plant Sci18: 644–655.
  • SanadiDR, LittlefieldJW, BockRM. 1952. Studies on alpha-ketoglutaric oxidase. II. Purification and properties. J Biol Chem197: 851–862.
  • SandelinA, CarninciP, LenhardB, PonjavicJ, HayashizakiY, HumeDA. 2007. Mammalian RNA polymerase II core promoters: Insights from genome-wide studies. Nat Rev Genet8: 424–436.
  • SchneitzK, HulskampM, KopczakSD, PruittRE. 1997. Dissection of sexual organ ontogenesis: A genetic analysis of ovule development in Arabidopsis thaliana. Development124: 1367–1376.
  • Schwarz-SommerZ, HueI, HuijserP, FlorPJ, HansenR, TetensF, et al. 1992. Characterization of the Antirrhinum floral homeotic MADS-box gene deficiens: Evidence for DNA binding and autoregulation of its persistent expression throughout flower development. EMBO J11: 251–263.
  • SessionsRA, ZambryskiPC. 1995. Arabidopsis gynoecium structure in the wild and in ettin mutants. Development121: 1519–1532.
  • SlatteryM, RileyT, LiuP, AbeN, Gomez-AlcalaP, DrorI, et al. 2011. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell147: 1270–1282.
  • SmaczniakC, ImminkRG, AngenentGC, KaufmannK. 2012a. Developmental and evolutionary diversity of plant MADS-domain factors: Insights from recent studies. Development139: 3081–3098.
  • SmaczniakC, ImminkRG, MuinoJM, BlanvillainR, BusscherM, Busscher-LangeJ, et al. 2012b. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci USA109: 1560–1565.
  • SunB, XuY, NgKH, ItoT. 2009. A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev23: 1791–1804.
  • TheissenG, SaedlerH. 2001. Plant biology. Floral quartets. Nature409: 469–471.
  • VernouxT, BrunoudG, FarcotE, MorinV, Van den DaeleH, LegrandJ, et al. 2011. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol7: 508.
  • WiggePA, KimMC, JaegerKE, BuschW, SchmidM, LohmannJU, et al. 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science309: 1056–1059.
  • WuestSE, O'MaoileidighDS, RaeL, KwasniewskaK, RaganelliA, HanczarykK, et al. 2012. Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci USA109: 13452–13457.
  • YanofskyMF, MaH, BowmanJL, DrewsGN, FeldmannKA, MeyerowitzEM. 1990. The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature346: 35–39.
  • ZhengY, RenN, WangH, StrombergAJ, PerrySE. 2009. Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell21: 2563–2577.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.